@article{MatternvonReppertZeuschneretal.2022, author = {Mattern, Maximilian and von Reppert, Alexander and Zeuschner, Steffen Peer and Pudell, Jan-Etienne and K{\"u}hne, F. and Diesing, Detlef and Herzog, Marc and Bargheer, Matias}, title = {Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {9}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0080378}, pages = {5}, year = {2022}, abstract = {We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds.}, language = {en} } @article{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and von Reppert, Alexander and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Photoacoustics}, volume = {30}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100463}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @misc{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and von Reppert, Alexander and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1321}, issn = {1866-8372}, doi = {10.25932/publishup-58886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588868}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @phdthesis{vonReppert2021, author = {von Reppert, Alexander}, title = {Magnetic strain contributions in laser-excited metals studied by time-resolved X-ray diffraction}, doi = {10.25932/publishup-53558}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535582}, school = {Universit{\"a}t Potsdam}, pages = {XV, 311}, year = {2021}, abstract = {In this work I explore the impact of magnetic order on the laser-induced ultrafast strain response of metals. Few experiments with femto- or picosecond time-resolution have so far investigated magnetic stresses. This is contrasted by the industrial usage of magnetic invar materials or magnetostrictive transducers for ultrasound generation, which already utilize magnetostrictive stresses in the low frequency regime. In the reported experiments I investigate how the energy deposition by the absorption of femtosecond laser pulses in thin metal films leads to an ultrafast stress generation. I utilize that this stress drives an expansion that emits nanoscopic strain pulses, so called hypersound, into adjacent layers. Both the expansion and the strain pulses change the average inter-atomic distance in the sample, which can be tracked with sub-picosecond time resolution using an X-ray diffraction setup at a laser-driven Plasma X-ray source. Ultrafast X-ray diffraction can also be applied to buried layers within heterostructures that cannot be accessed by optical methods, which exhibit a limited penetration into metals. The reconstruction of the initial energy transfer processes from the shape of the strain pulse in buried detection layers represents a contribution of this work to the field of picosecond ultrasonics. A central point for the analysis of the experiments is the direct link between the deposited energy density in the nano-structures and the resulting stress on the crystal lattice. The underlying thermodynamical concept of a Gr{\"u}neisen parameter provides the theoretical framework for my work. I demonstrate how the Gr{\"u}neisen principle can be used for the interpretation of the strain response on ultrafast timescales in various materials and that it can be extended to describe magnetic stresses. The class of heavy rare-earth elements exhibits especially large magnetostriction effects, which can even lead to an unconventional contraction of the laser-excited transducer material. Such a dominant contribution of the magnetic stress to the motion of atoms has not been demonstrated previously. The observed rise time of the magnetic stress contribution in Dysprosium is identical to the decrease in the helical spin-order, that has been found previously using time-resolved resonant X-ray diffraction. This indicates that the strength of the magnetic stress can be used as a proxy of the underlying magnetic order. Such magnetostriction measurements are applicable even in case of antiparallel or non-collinear alignment of the magnetic moments and a vanishing magnetization. The strain response of metal films is usually determined by the pressure of electrons and lattice vibrations. I have developed a versatile two-pulse excitation routine that can be used to extract the magnetic contribution to the strain response even if systematic measurements above and below the magnetic ordering temperature are not feasible. A first laser pulse leads to a partial ultrafast demagnetization so that the amplitude and shape of the strain response triggered by the second pulse depends on the remaining magnetic order. With this method I could identify a strongly anisotropic magnetic stress contribution in the magnetic data storage material iron-platinum and identify the recovery of the magnetic order by the variation of the pulse-to-pulse delay. The stark contrast of the expansion of iron-platinum nanograins and thin films shows that the different constraints for the in-plane expansion have a strong influence on the out-of-plane expansion, due to the Poisson effect. I show how such transverse strain contributions need to be accounted for when interpreting the ultrafast out-of-plane strain response using thermal expansion coefficients obtained in near equilibrium conditions. This work contributes an investigation of magnetostriction on ultrafast timescales to the literature of magnetic effects in materials. It develops a method to extract spatial and temporal varying stress contributions based on a model for the amplitude and shape of the emitted strain pulses. Energy transfer processes result in a change of the stress profile with respect to the initial absorption of the laser pulses. One interesting example occurs in nanoscopic gold-nickel heterostructures, where excited electrons rapidly transport energy into a distant nickel layer, that takes up much more energy and expands faster and stronger than the laser-excited gold capping layer. Magnetic excitations in rare earth materials represent a large energy reservoir that delays the energy transfer into adjacent layers. Such magneto-caloric effects are known in thermodynamics but not extensively covered on ultrafast timescales. The combination of ultrafast X-ray diffraction and time-resolved techniques with direct access to the magnetization has a large potential to uncover and quantify such energy transfer processes.}, language = {en} } @article{PudellMaznevHerzogetal.2018, author = {Pudell, Jan-Etienne and Maznev, A. A. and Herzog, Marc and Kronseder, M. and Back, Christian H. and Malinowski, Gregory and von Reppert, Alexander and Bargheer, Matias}, title = {Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05693-5}, pages = {7}, year = {2018}, abstract = {Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.}, language = {en} } @article{vonReppertWilligPudelletal.2018, author = {von Reppert, Alexander and Willig, Lisa and Pudell, Jan-Etienne and Roessle, M. and Leitenberger, Wolfram and Herzog, Marc and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Ultrafast laser generated strain in granular and continuous FePt thin films}, series = {Applied physics letters}, volume = {113}, journal = {Applied physics letters}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5050234}, pages = {5}, year = {2018}, abstract = {We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13\% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s).}, language = {en} } @article{PudellvonReppertSchicketal.2019, author = {Pudell, Jan-Etienne and von Reppert, Alexander and Schick, D. and Zamponi, F. and R{\"o}ssle, Matthias and Herzog, M. and Zabel, Hartmut and Bargheer, Matias}, title = {Ultrafast negative thermal expansion driven by spin disorder}, series = {Physical review : B, Condensed matter and materials physics}, volume = {99}, journal = {Physical review : B, Condensed matter and materials physics}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.99.094304}, pages = {7}, year = {2019}, abstract = {We measure the transient strain profile in a nanoscale multilayer system composed of yttrium, holmium, and niobium after laser excitation using ultrafast x-ray diffraction. The strain propagation through each layer is determined by transient changes in the material-specific Bragg angles. We experimentally derive the exponentially decreasing stress profile driving the strain wave and show that it closely matches the optical penetration depth. Below the Neel temperature of Ho, the optical excitation triggers negative thermal expansion, which is induced by a quasi-instantaneous contractive stress and a second contractive stress contribution increasing on a 12-ps timescale. These two timescales were recently measured for the spin disordering in Ho [Rettig et al., Phys. Rev. Lett. 116, 257202 (2016)]. As a consequence, we observe an unconventional bipolar strain pulse with an inverted sign traveling through the heterostructure.}, language = {en} } @article{WilligvonReppertDebetal.2019, author = {Willig, Lisa and von Reppert, Alexander and Deb, Marwan and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Finite-size effects in ultrafast remagnetization dynamics of FePt}, series = {Physical review : B, Condensed matter and materials physics}, volume = {100}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.100.224408}, pages = {6}, year = {2019}, abstract = {We investigate the ultrafast magnetization dynamics of FePt in the L1(0) phase after an optical heating pulse, as used in heat-assisted magnetic recording. We compare continuous and nano-granular thin films and emphasize the impact of the finite size on the remagnetization dynamics. The remagnetization speeds up significantly with increasing external magnetic field only for the continuous film, where domain-wall motion governs the dynamics. The ultrafast remagnetization dynamics in the continuous film are only dominated by heat transport in the regime of high magnetic fields, whereas the timescale required for cooling is prevalent in the granular film for all magnetic field strengths. These findings highlight the necessary conditions for studying the intrinsic heat transport properties in magnetic materials.}, language = {en} } @misc{vonReppertMatternPudelletal.2020, author = {von Reppert, Alexander and Mattern, Maximilian and Pudell, Jan-Etienne and Zeuschner, Steffen Peer and Dumesnil, Karine and Bargheer, Matias}, title = {Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {899}, issn = {1866-8372}, doi = {10.25932/publishup-46935}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469350}, pages = {15}, year = {2020}, abstract = {Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses.}, language = {en} } @article{vonReppertMatternPudelletal.2020, author = {von Reppert, Alexander and Mattern, Maximilian and Pudell, Jan-Etienne and Zeuschner, Steffen Peer and Dumesnil, Karine and Bargheer, Matias}, title = {Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer}, series = {Structural Dynamics}, volume = {7}, journal = {Structural Dynamics}, number = {024303}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.5145315}, pages = {13}, year = {2020}, abstract = {Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses.}, language = {en} }