@article{WucknitzWisotzkiLopezetal.2003, author = {Wucknitz, Olaf and Wisotzki, Lutz and Lopez, S. and Gregg, M. D.}, title = {Disentangling microlensing and differential extinction in the double QSO HE 0512-3329}, year = {2003}, abstract = {We present the first separate spectra of both components of the small-separation double QSO HE 0512-3329 obtained with HST/STIS in the optical and near UV. The similarities especially of the emission line profiles and redshifts strongly suggest that this system really consists of two lensed images of one and the same source. The emission line flux ratios are assumed to be unaffected by microlensing and are used to study the differential extinction effects caused by the lensing galaxy. Fits of empirical laws show that the extinction properties seem to be different on both lines of sight. With our new results, HE 0512-3329 becomes one of the few extragalactic systems which show the 2175 {\AA} absorption feature, although the detection is only marginal. We then correct the continuum flux ratio for extinction to obtain the differential microlensing signal. Since this may still be significantly affected by variability and time-delay effects, no detailled analysis of the microlensing is possible at the moment. This is the first time that differential extinction and microlensing could be separated unambiguously. We show that, at least in HE 0512-3329, both effects contribute significantly to the spectral differences and one cannot be analysed without taking into account the other. For lens modelling purposes, the flux ratios can only be used after correcting for both effects.}, language = {en} } @article{BeckmannEngelsBadeetal.2003, author = {Beckmann, Volker and Engels, Dieter and Bade, Norbert and Wucknitz, Olaf}, title = {The HRX-BL Lac sample : Evolution of BL Lac objects}, year = {2003}, abstract = {The unification of X-ray and radio selected BL Lacs has been an outstanding problem in the blazar research in the past years. Recent investigations have shown that the gap between the two classes can be filled with intermediate objects and that apparently all differences can be explained by mutual shifts of the peak frequencies of the synchrotron and inverse Compton component of the emission. We study the consequences of this scheme using a new sample of X-ray selected BL Lac objects comprising 104 objects with z<0.9 and a mean redshift bar {z} = 0.34. 77 BL Lacs, of which the redshift could be determined for 64 (83\%) objects, form a complete sample. The new data could not confirm our earlier result, drawn from a subsample, that the negative evolution vanishes below a synchrotron peak frequency log nupeak = 16.5. The complete sample shows negative evolution at the 2sigma level (< Ve/Va > = 0.42 +/- 0.04). We conclude that the observed properties of the HRX BL Lac sample show typical behaviour for X-ray selected BL Lacs. They support an evolutionary model, in which flat-spectrum radio quasars (FSRQ) with high energetic jets evolve towards low frequency peaked (mostly radio-selected) BL Lac objects and later on to high frequency peaked (mostly X-ray selected) BL Lacs.}, language = {en} } @article{WucknitzSperhake2004, author = {Wucknitz, Olaf and Sperhake, U.}, title = {Deflection of light and particles by moving gravitational lenses}, issn = {0556-2821}, year = {2004}, abstract = {Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2 v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession. in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies}, language = {en} } @article{WucknitzBiggsBrowne2004, author = {Wucknitz, Olaf and Biggs, Andy D. and Browne, Ian W. A.}, title = {Models for the lens and source of B0218+357 : a LensClean approach to determine H-0}, issn = {0035-8711}, year = {2004}, abstract = {B0218 + 357 is one of the most promising systems to determine the Hubble constant from time-delays in gravitational lenses. Consisting of two bright images, which are well resolved in very long baseline interferometry (VLBI) observations, plus one of the most richly structured Einstein rings, it potentially provides better constraints for the mass model than most other systems. The main problem left until now was the very poorly determined position of the lensing galaxy. After presenting detailed results from classical lens modelling, we apply our improved version of the LENSCLEAN algorithm which for the first time utilizes the beautiful Einstein ring for lens modelling purposes. The primary result using isothermal lens models is a now very well defined lens position of (255 +/- 6, 119 +/- 4) mas relative to the A image, which allows the first reliable measurement of the Hubble constant from the time-delay of this system. The result of H-0 = (78 +/- 6) km s(-1) Mpc(-1) (2sigma) is very high compared with other lenses. It is, however, compatible with local estimates from the Hubble Space Telescope (HST) key project and with WMAP results, but less prone to systematic errors. We furthermore discuss possible changes of these results for different radial mass profiles and find that the final values cannot be very different from the isothermal expectations. The power-law exponent of the potential is constrained by VLBI data of the compact images and the inner jet to be beta = 1.04 +/- 0.02, which confirms that the mass distribution is approximately isothermal (corresponding to beta = 1), but slightly shallower. The effect on H-0 is reduced from the expected 4 per cent decrease by an estimated shift of the best galaxy position of circa 4 mas to at most 2 per cent. Maps of the unlensed source plane produced from the best LENSCLEAN brightness model show a typical jet structure and allow us to identify the parts which are distorted by the lens to produce the radio ring. We also present a composite map which for the first time shows the rich structure of B0218 + 357 on scales ranging from mas to arcsec, both in the image plane and in the reconstructed source plane. Finally, we use a comparison of observations at different frequencies to investigate the question of possible weakening of one of the images by propagation effects and/or source shifts with frequency. The data clearly favour the model of significant 'extinction' without noticeable source position shifts. The technical details of our variant of the LENSCLEAN method are presented in the accompanying Paper I.}, language = {en} } @article{Wucknitz2004, author = {Wucknitz, Olaf}, title = {LensClean revisited}, issn = {0035-8711}, year = {2004}, abstract = {We discuss the LENSCLEAN algorithm which for a given gravitational lens model fits a source brightness distribution to interferometric radio data in a similar way as standard CLEAN does in the unlensed case. The lens model parameters can then be varied in order to minimize the residuals and determine the best model for the lens mass distribution. Our variant of this method is improved in order to be useful and stable even for high dynamic range systems with nearly degenerated lens model parameters. Our test case B0218 + 357 is dominated by two bright images but the information needed to constrain the unknown parameters is provided only by the relatively smooth and weak Einstein ring. The new variant of LENSCLEAN is able to fit lens models even in this difficult case. In order to allow the use of general mass models with LENSCLEAN, we develop the new method LENTIL which inverts the lens equation much more reliably than any other method. This high reliability is essential for the use as part of LENSCLEAN. Finally a new method is developed to produce source plane maps of the unlensed source from the best LENSCLEAN brightness models. This method is based on the new concept of 'dirty beams' in the source plane. The application to the lens B0218 + 357 leads to the first useful constraints for the lens position and thus to a result for the Hubble constant. These results are presented in the accompanying Paper II, together with a discussion of classical lens modelling for this system}, language = {en} } @article{YorkJacksonBrowneetal.2005, author = {York, T. and Jackson, N. and Browne, Ian W. A. and Wucknitz, Olaf and Skelton, J. E.}, title = {The Hubble constant from the gravitational lens CLASS B0218+357 using the Advanced Camera for Surveys}, issn = {0035-8711}, year = {2005}, abstract = {We present deep optical observations of the gravitational lens system CLASS B0218 + 357, from which we derive an estimate for the Hubble constant (H-0). Extensive radio observations using the VLA, MERLIN, the VLBA and VLBI have reduced the degeneracies between H-0 and the mass model parameters in this lens to one involving only the position of the radio-quiet lensing galaxy with respect to the lensed images. B0218 + 357 has an image separation of only 334 mas, so optical observations have, up until now, been unable to resolve the lens galaxy from the bright lensed images. Using the new Advanced Camera for Surveys (ACS), installed on the Hubble Space Telescope in 2002, we have obtained deep optical images of the lens system and surrounding field. These observations have allowed us to determine the separation between the lens galaxy centre and the brightest image, and so estimate H-0. We find an optical galaxy position, and hence an H0 value, that varies depending on our approach to the spiral arms in B0218 + 357. If the most prominent spiral arms are left unmasked, we find H-0 = 70 +/- 5 km s(-1) Mpc(-1) (95 per cent confidence). If the spiral arms are masked out, we find H-0 = 61 +/- 7 km s(-1) Mpc(-1) (95 per cent confidence)}, language = {en} } @article{LopezReimersGreggetal.2005, author = {Lopez, S. and Reimers, Dieter and Gregg, M. D. and Wisotzki, Lutz and Wucknitz, Olaf and Guzman, A.}, title = {Metal abundances in a damped Ly alpha system along two lines of sight at z=0.93}, issn = {0004-637X}, year = {2005}, abstract = {We study metal abundances in the z = 0.9313 damped Ly alpha system observed along the two lines of sight, A and B, toward the gravitationally lensed double QSO HE 0512-3329. Spatially resolved Space Telescope Imaging Spectrograph spectra constrain the neutral-gas column density to be N(H I) = 1020.5 cm(-2) in both A and B. UV-visual Echelle Spectrograph spectra ( spectral resolution FWHM = 9.8 km s(-1)) show, in contrast, significant line-of-sight differences in the column densities of Mn II and Fe II; these are not due to observational systematics. We find that [Mn/H] = -1.44 and [Fe/H] = -1.52 in damped Ly alpha system A, while [Mn/H] = -0.98 and [Fe/H] > -1.32, and possibly as high as [Fe/H] approximate to -1, in damped Ly alpha system B. A careful assessment of possible systematic errors leads us to conclude that these transverse differences are significant at a 5 sigma level or greater. Although nucleosynthesis effects may also be at play, we favor differential dust depletion as the main mechanism producing the observed abundance gradient. The transverse separation is 5 h(70)(-1) kpc at the redshift of the absorber, which is also likely to be the lensing galaxy. The derived abundances therefore probe two opposite sides of a single galaxy hosting both damped Ly alpha systems. This is the first time firm abundance constraints have been obtained for a single damped system probed by two lines of sight. The significance of this finding for the cosmic evolution of metals is discussed}, language = {en} } @article{MittalPorcasWucknitzetal.2006, author = {Mittal, Rupal and Porcas, Richard and Wucknitz, Olaf and Biggs, Andy D. and Browne, Ian W. A.}, title = {VLBI phase-reference observations of the gravitational lens JVAS B0218+357}, doi = {10.1051/0004-6361:20054012}, year = {2006}, abstract = {We present the results of phase-referenced VLBA+Effelsberg observations at five frequencies of the double-image gravitational lens WAS B0218+357, made to establish the precise registration of the A and B lensed image positions. The motivation behind these observations is to investigate the anomalous variation of the image flux-density ratio (A[B) with frequency - this ratio changes by almost a factor of two over a frequency range from 1.65 GHz to 15.35 GHz. We investigate whether frequency dependent image positions, combined with a magnification gradient across the image field, could give rise to the anomaly. Our observations confirm the variation of image flux-density ratio with frequency. The results from Our phase-reference astrometry, taken together with the lens mass model of Wucknitz et al. (2004, MNRAS, 349, 14), show that shifts of the image peaks and centroids are too small to account for the observed frequency- dependent ratio}, language = {en} }