@article{ScheinerReimSoviketal.2017, author = {Scheiner, Ricarda and Reim, Tina and Sovik, Eirik and Entler, Brian V. and Barron, Andrew B. and Thamm, Markus}, title = {Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees}, series = {The journal of experimental biology}, volume = {220}, journal = {The journal of experimental biology}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.152496}, pages = {1443 -- 1450}, year = {2017}, abstract = {Honeybees are well known for their complex division of labor. Each bee sequentially performs a series of social tasks during its life. The changes in social task performance are linked to gross differences in behavior and physiology. We tested whether honeybees performing different social tasks (nursing versus foraging) would differ in their gustatory responsiveness and associative learning behavior in addition to their daily tasks in the colony. Further, we investigated the role of the biogenic amine tyramine and its receptors in the behavior of nurse bees and foragers. Tyramine is an important insect neurotransmitter, which has long been neglected in behavioral studies as it was believed to only act as the metabolic precursor of the better-known amine octopamine. With the increasing number of characterized tyramine receptors in diverse insects, we need to understand the functions of tyramine on its own account. Our findings suggest an important role for tyramine and its two receptors in regulating honeybee gustatory responsiveness, social organization and learning behavior. Foragers, which were more responsive to gustatory stimuli than nurse bees and performed better in appetitive learning, also differed from nurse bees in their tyramine brain titers and in the mRNA expression of a tyramine receptor in the brain. Pharmacological activation of tyramine receptors increased gustatory responsiveness of nurse bees and foragers and improved appetitive learning in nurse bees. These data suggest that a large part of the behavioral differences between honeybees may be directly linked to tyramine signaling in the brain.}, language = {en} } @article{ThammSchollReimetal.2017, author = {Thamm, Markus and Scholl, Christina and Reim, Tina and Gruebel, Kornelia and Moeller, Karin and Rossler, Wolfgang and Scheiner, Ricarda}, title = {Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain}, series = {The journal of comparative neurology}, volume = {525}, journal = {The journal of comparative neurology}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.24228}, pages = {2615 -- 2631}, year = {2017}, abstract = {Tyramine is an important neurotransmitter, neuromodulator, and neurohormone in insects. In honeybees, it is assumed to have functions in modulating sensory responsiveness and controlling motor behavior. Tyramine can bind to two characterized receptors in honeybees, both of which are coupled to intracellular cAMP pathways. How tyramine acts on neuronal, cellular and circuit levels is unclear. We investigated the spatial brain expression of the tyramine receptor AmTAR1 using a specific antibody. This antibody detects a membrane protein of the expected molecular weight in western blot analysis. In honeybee brains, it labels different structures which process sensory information. Labeling along the antennal nerve, in projections of the dorsal lobe and in the gnathal ganglion suggest that tyramine receptors are involved in modulating gustatory and tactile perception. Furthermore, the ellipsoid body of the central complex and giant synapses in the lateral complex show AmTAR1-like immunoreactivity (AmTAR1-IR), suggesting a role of this receptor in modulating sky-compass information and/or higher sensor-motor control. Additionally, intense signals derive from the mushroom bodies, higher-order integration centers for olfactory, visual, gustatory and tactile information. To investigate whether AmTAR1-expressing brain structures are in vicinity to tyramine releasing sites, a specific tyramine antibody was applied. Tyramine-like labeling was observed in AmTAR1-IR positive structures, although it was sometimes weak and we did not always find a direct match of ligand and receptor. Moreover, tyramine-like immunoreactivity was also found in brain regions without AmTAR1-IR (optic lobes, antennal lobes), indicating that other tyramine-specific receptors may be expressed there.}, language = {en} } @article{ScheinerKulikovskajaThamm2014, author = {Scheiner, Ricarda and Kulikovskaja, Leonora and Thamm, Markus}, title = {The honey bee tyramine receptor AmTYR1 and division of foraging labour}, series = {The journal of experimental biology}, volume = {217}, journal = {The journal of experimental biology}, number = {8}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.098475}, pages = {1215 -- 1217}, year = {2014}, abstract = {Honey bees display a fascinating division of labour among foragers. While some bees solely collect pollen, others only collect nectar. It is assumed that individual differences in sensory response thresholds are at the basis of this division of labour. Biogenic amines and their receptors are important candidates for regulating the division of labour, because they can modulate sensory response thresholds. Here, we investigated the role of the honey bee tyramine receptor AmTYR1 in regulating the division of foraging labour. We report differential splicing of the Amtyr1 gene and show differential gene expression of one isoform in the suboesophageal ganglion of pollen and nectar foragers. This ganglion mediates gustatory inputs. These findings imply a role for the honey bee tyramine receptor in regulating the division of foraging labour, possibly through the suboesophageal ganglion.}, language = {en} } @article{ThammScheiner2014, author = {Thamm, Markus and Scheiner, Ricarda}, title = {PKG in honey bees: spatial expression, amfor gene expression, sucrose responsiveness, and division of labor}, series = {The journal of comparative neurology}, volume = {522}, journal = {The journal of comparative neurology}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.23500}, pages = {1786 -- 1799}, year = {2014}, abstract = {Division of labor is a hallmark of social insects. In honey bees, division of labor involves transition of female workers from one task to the next. The most distinct tasks are nursing (providing food for the brood) and foraging (collecting pollen and nectar). The brain mechanisms regulating this form of behavioral plasticity have largely remained elusive. Recently, it was suggested that division of labor is based on nutrition-associated signaling pathways. One highly conserved gene associated with food-related behavior across species is the foraging gene, which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Our analysis of this gene reveals the presence of alternative splicing in the honey bee. One isoform is expressed in the brain. Expression of this isoform is most pronounced in the mushroom bodies, the subesophageal ganglion, and the corpora allata. Division of labor and sucrose responsiveness in honey bees correlate significantly with foraging gene expression in distinct brain regions. Activating PKG selectively increases sucrose responsiveness in nurse bees to the level of foragers, whereas the same treatment does not affect responsiveness to light. These findings demonstrate a direct link between PKG signaling in distinct brain areas and division of labor. Furthermore, they demonstrate that the difference in sensory responsiveness between nurse bees and foragers can be compensated for by activating PKG. Our findings on the function of PKG in regulating specific sensory responsiveness and social organization offer valuable indications for the function of the cGMP/PKG pathway in many other insects and vertebrates. J. Comp. Neurol. 522:1786-1799, 2014. (c) 2013 Wiley Periodicals, Inc.}, language = {en} } @misc{BlenauThamm2011, author = {Blenau, Wolfgang and Thamm, Markus}, title = {Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies lessons from Drosophila melanogaster and Apis mellifera}, series = {Arthropod structure \& development}, volume = {40}, journal = {Arthropod structure \& development}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1467-8039}, doi = {10.1016/j.asd.2011.01.004}, pages = {381 -- 394}, year = {2011}, abstract = {The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.}, language = {en} } @article{ReimThammRolkeetal.2013, author = {Reim, Tina and Thamm, Markus and Rolke, Daniel and Blenau, Wolfgang and Scheiner, Ricarda}, title = {Suitability of three common reference genes for quantitative real-time PCR in honey bees}, series = {Apidologie : a quality journal in bee science}, volume = {44}, journal = {Apidologie : a quality journal in bee science}, number = {3}, publisher = {Springer}, address = {Paris}, issn = {0044-8435}, doi = {10.1007/s13592-012-0184-3}, pages = {342 -- 350}, year = {2013}, abstract = {Honey bees are important model organisms for neurobiology, because they display a large array of behaviors. To link behavior with individual gene function, quantitative polymerase chain reaction is frequently used. Comparing gene expression of different individuals requires data normalization using adequate reference genes. These should ideally be expressed stably throughout lifetime. Unfortunately, this is frequently not the case. We studied how well three commonly used reference genes are suited for this purpose and measured gene expression in the brains of honey bees differing in age and social role. Although rpl32 is used most frequently, it only remains stable in expression between newly emerged bees, nurse-aged bees, and pollen foragers but shows a peak at the age of 12 days. The genes gapdh and ef1 alpha-f1, in contrast, are expressed stably in the brain throughout all age groups except newly emerged bees. According to stability software, gapdh was expressed most stably, followed by rpl32 and ef1 alpha-f1.}, language = {en} } @article{ThammRolkeJordanetal.2013, author = {Thamm, Markus and Rolke, Daniel and Jordan, Nadine and Balfanz, Sabine and Schiffer, Christian and Baumann, Arnd and Blenau, Wolfgang}, title = {Function and distribution of 5-HT2 receptors in the honeybee (apis mellifera)}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0082407}, pages = {12}, year = {2013}, abstract = {Background: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2 alpha and Am5-HT2 beta. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.}, language = {en} } @article{ThammBalfanzScheineretal.2010, author = {Thamm, Markus and Balfanz, Sabine and Scheiner, Richarda and Baumann, Arnd and Blenau, Wolfgang}, title = {Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior}, issn = {1420-682X}, doi = {10.1007/s00018-010-0350-6}, year = {2010}, abstract = {Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT1 receptor class. Activation of Am5-HT1A by serotonin inhibited the production of cAMP in a dose-dependent manner (EC50 = 16.9 nM). Am5-HT1A was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT1A receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT1A receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.}, language = {en} } @article{ThammSchmidtBernhard2010, author = {Thamm, Markus and Schmidt, Stephanie L. and Bernhard, Detlef}, title = {Insights into the phylogeny of the genus stentor (heterotrichea, ciliophora) with special emphasis on the evolution of the macronucleus based on SSU rDNA data}, issn = {0065-1583}, year = {2010}, abstract = {Representatives of the genus Stentor (Stentoridae, Heterotrichea) are striking ciliates in environmental water samples because of their size (up to 4 mm) and their trumpet-like shape. Important for species identification are the following main characteristics: (1) the presence or absence of endosymbiotic algae (zoochlorellae); (2) the colour of the pigmented cortical granules, and (3) the shape of the macronucleus. The complete small subunit rDNA (SSU rDNA) of 19 further representatives of the genus Stentor was sequenced to examine the phylogenetic relationships within this genus and to determine the taxonomic value of these main characteristics. The detailed phylogenetic analyses yielded a separation of all species possessing a single compact macronucleus from those species with an "elongated" macronucleus (moniliform or vermiform). The data also indicate that the uptake of algae as well as the loss of pigmentation happened independently in different lineages. Furthermore, a high level of intraspecific variation within several species was found. Thus, S. muelleri and S. (sp.) cf. katashimai appear to represent distinct species and S. multiformis is composed of a species complex.}, language = {en} } @phdthesis{Thamm2009, author = {Thamm, Markus}, title = {Charakterisierung der Serotonin-Rezeptoren der Honigbiene Apis mellifera : von den Genen zum Verhalten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40736}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Das serotonerge System besitzt sowohl bei Invertebraten als auch bei Vertebraten eine große Bedeutung f{\"u}r die Kontrolle und Modulation vieler physiologischer Prozesse und Verhaltensleistungen. Bei der Honigbiene Apis mellifera spielt Serotonin (5-Hydroxytryptamin, 5-HT) eine wichtige Rolle bei der Arbeitsteilung und dem Lernen. Die 5-HT-Rezeptoren, die {\"u}berwiegend zur Familie der G-Protein gekoppelten Rezeptoren (GPCRs) geh{\"o}ren, besitzen eine Schl{\"u}sselstellung f{\"u}r das Verst{\"a}ndnis der molekularen Mechanismen der serotonergen Signalweiterleitung. Ziel dieser Arbeit war es, 5-HT-Rezeptoren der Honigbiene zu charakterisieren. Dazu z{\"a}hlt die Identifizierung der molekularen Struktur, die Ermittlung der intrazellul{\"a}ren Signalwege, die Erstellung von pharmakologischen Profilen, die Ermittlung der Expressionsmuster und die Ermittlung der physiologischen Funktionen der Rezeptoren. Mit Hilfe der Informationen aus dem Honey Bee Genome Project, konnten drei RezeptorcDNAs kloniert werden. Vergleiche der abgeleiteten Aminos{\"a}uresequenzen mit den Aminos{\"a}uresequenzen bereits charakterisierter Rezeptoren legten nahe, dass es sich dabei um einen 5-HT1- (Am5-HT1) und zwei 5-HT2-Rezeptoren (Am5-HT2α und Am5-HT2β) handelt. Die strukturelle Analyse der abgeleiteten Aminos{\"a}uresequenz dieser Rezeptoren postuliert das Vorhandensein der charakteristischen heptahelikalen Architektur von GPCRs und zeigt starkkonservierte Motive, die bedeutend f{\"u}r die Ligandenbindung, die Rezeptoraktivierung und die Kopplung an G-Proteine sind. F{\"u}r die beiden 5 HT2-Rezeptoren konnte zudem alternatives Spleißen nachgewiesen werden. Mit den cDNAs des Am5-HT1- und des Am5-HT2α-Rezeptors wurden HEK293-Zellen stabil transfiziert und anschließend die Rezeptoren funktionell und pharmakologisch analysiert. Am5-HT1 hemmt bei Aktivierung abh{\"a}ngig von der 5-HT-Konzentration die cAMPProduktion.Die Substanzen 5-Methoxytryptamin (5-MT) und 5-Carboxamidotryptamin konnten als Agonisten identifiziert werden. Methiothepin dagegen blockiert die 5-HTWirkung vollst{\"a}ndig. Prazosin und WAY100635 stellen partielle Antagonisten des Am5-HT1-Rezeptors dar. Der Am5-HT2_-Rezeptor stimuliert bei Aktivierung die Synthese des sekund{\"a}ren Botenstoffs Inositoltrisphosphat, was wiederum zu einer messbaren Erh{\"o}hung der intrazellul{\"a}ren Ca2+-Konzentration f{\"u}hrt. 5-MT und 8-OH-DPAT zeigen eine deutliche agonistische Wirkung auf Am5-HT2α. Dagegen besitzen Clozapin, Methiothepin, Mianserin und Cyproheptadin die F{\"a}higkeit, die 5-HT-Wirkung um 51-64 \% zu vermindern. Die bereits erw{\"a}hnte alternative Spleißvariante von Am5-HT2α wurde ebenfalls in HEK293-Zellen exprimiert und analysiert, scheint jedoch eigenst{\"a}ndig nicht funktionell zu sein. Gegen die dritte cytoplasmatische Schleife (CPL3) wurde ein polyklonales Antiserum generiert. Dieses erkennt in Western-Blot-Analysen ein Protein mit einer Masse von ca. 50 kDa. Durch immunhistochemische Analysen am Bienengehirn wurde die Verteilung des Rezeptors genauer untersucht. Dabei zeigten die optischen Neuropile, besonders die Lamina und die Ocellarnerven, stets eine starke Markierung. Außerdem wird der Rezeptor in den α- und β-Loben sowie der Lippe, dem Basalring und dem Pedunculus der Pilzk{\"o}rper exprimiert. Doppelmarkierungen zeigen stets eine enge Nachbarschaft von serotonergen Fasern und dem Am5-HT1-Rezeptor. Weiterhin konnte gezeigt werden, dass der Am5-HT1-Rezeptor sehr wahrscheinlich an der Regulation des phototaktischen Verhalten der Honigbiene beteiligt ist. Verf{\"u}tterung von 5-HT hat eine deutlich negative Wirkung auf das phototaktischen Verhalten. Diese kann durch den Am5-HT1-Rezeptor-Agonisten 5-CT imitiert werden. Schließlich konnte gezeigt werden, dass der Am5-HT1-Antagonist Prazosin die 5-HT-Wirkung deutlich vermindern kann.}, language = {de} }