@article{JaraMunozMelnickPedojaetal.2019, author = {Jara-Munoz, Julius and Melnick, Daniel and Pedoja, Kevin and Strecker, Manfred}, title = {TerraceM-2: A MatlabR (R) Interface for Mapping and Modeling Marine and Lacustrine Terraces}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00255}, pages = {18}, year = {2019}, abstract = {The morphology of marine and lacustrine terraces has been largely used to measure past sea- and lake-level positions and estimate vertical deformation in a wealth of studies focused on climate and tectonic processes. To obtain accurate morphometric assessments of terrace morphology we present TerraceM-2, an improved version of our MatlabR (R) graphic-user interface that provides new methodologies for morphometric analyses as well as landscape evolution and fault-dislocation modeling. The new version includes novel routines to map the elevation and spatial distribution of terraces, to model their formation and evolution, and to estimate fault-slip rates from terrace deformation patterns. TerraceM-2 has significantly improves its processing speed and mapping capabilities, and includes separate functions for developing customized workflows beyond the graphic-user interface. We illustrate these new mapping and modeling capabilities with three examples: mapping lacustrine shorelines in the Dead Sea to estimate deformation across the Dead Sea Fault, landscape evolution modeling to estimate a history of uplift rates in southern Peru, and dislocation modeling of deformed marine terraces in California. These examples also illustrate the need to use topographic data of different resolutions. The new modeling and mapping routines of TerraceM-2 highlight the advantages of an integrated joint mapping and modeling approach to improve the efficiency and precision of coastal terrace metrics in both marine and lacustrine environments.}, language = {en} } @article{JaraMunozMelnickZambranoetal.2017, author = {Jara-Munoz, Julius and Melnick, Daniel and Zambrano, Patricio and Rietbrock, Andreas and Gonzalez, Javiera and Argandona, Boris and Strecker, Manfred}, title = {Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile}, series = {Journal of geophysical research : Solid earth}, volume = {122}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013339}, pages = {4529 -- 4558}, year = {2017}, abstract = {Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3m/ka near the edge of the continental shelf, 1.5m/ka at the emerged Santa Maria Island, -0.1m/ka at the center of the Arauco Bay, and 0.3m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa Maria splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3km depth down to the plate interface at 16km that slips at a rate between 3.0 and 3.7m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of similar to 150-200years, the fault would slip similar to 0.5m per event, equivalent to a magnitude similar to 6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every similar to 1000years, the fault would slip similar to 3.7m per event, equivalent to a magnitude similar to 7.5 earthquake.}, language = {en} }