@article{WeissPfestorfMayetal.2014, author = {Weiss, Lina and Pfestorf, Hans and May, Felix and K{\"o}rner, Katrin and Boch, Steffen and Fischer, Markus and M{\"u}ller, J{\"o}rg and Prati, Daniel and Socher, Stephanie A. and Jeltsch, Florian}, title = {Grazing response patterns indicate isolation of semi-natural European grasslands}, series = {Oikos}, volume = {123}, journal = {Oikos}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2013.00957.x}, pages = {599 -- 612}, year = {2014}, abstract = {Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades.}, language = {en} } @article{MayGrimmJeltsch2009, author = {May, Felix and Grimm, Volker and Jeltsch, Florian}, title = {Reversed effects of grazing on plant diversity : the role of below-ground competition and size symmetry}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2009.17724.x}, year = {2009}, abstract = {Grazing is known as one of the key factors for diversity and community composition in grassland ecosystems, but the response of plant communities towards grazing varies remarkably between sites with different environmental conditions. It is generally accepted that grazing increases plant diversity in productive environments, while it tends to reduce diversity in unproductive habitats (grazing reversal hypothesis). Despite empirical evidence for this pattern the mechanistic link between modes of plant-plant competition and grazing response at the community level still remains poorly understood. Root-competition in particular has rarely been included in theoretical studies, although it has been hypothesized that variations in productivity and grazing regime can alter the relative importance of shoot- and root-competition. We therefore developed an individual-based model based on plant functional traits to investigate the response of a grassland community towards grazing. Models of different complexity, either incorporating only shoot competition or with distinct shoot- and root-competition, were used to study the interactive effects of grazing, resource availability, and the mode of competition (size-symmetric or asymmetric). The pattern predicted by the grazing reversal hypothesis (GRH) can only be explained by our model if shoot- and root-competition are explicitly considered and if size asymmetry of above- and symmetry of below-ground competition is assumed. For this scenario, the model additionally reproduced empirically observed plant trait responses: erect and large plant functional types (PFTs) dominated without grazing, while frequent grazing favoured small PFTs with a rosette growth form. We conclude that interactions between shoot- and root-competition and size symmetry/asymmetry of plant-plant interactions are crucial in order to understand grazing response under different habitat productivities. Our results suggest that future empirical trait surveys in grassland communities should include root traits, which have been largely ignored in previous studies, in order to improve predictions of plants" responses to grazing.}, language = {en} } @article{MayGiladiZivetal.2012, author = {May, Felix and Giladi, Itamar and Ziv, Yaron and Jeltsch, Florian}, title = {Dispersal and diversity - unifying scale-dependent relationships within the neutral theory}, series = {Oikos}, volume = {121}, journal = {Oikos}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2011.20078.x}, pages = {942 -- 951}, year = {2012}, abstract = {The response of species diversity to dispersal capability is inherently scale-dependent: increasing dispersal capability is expected to increase diversity at the local scale, while decreasing diversity at the metacommunity scale. However, these expectations are based on model formulations that neglect dispersal limitation and species segregation at the local scale. We developed a unifying framework of dispersaldiversity relationships and tested the generality of these expectations. For this purpose we used a spatially-explicit neutral model with various combinations of survey area (local scale) and landscape size (metacommunity scale). Simulations were conducted using landscapes of finite and of conceptually infinite size. We analyzed the scale-dependence of dispersal-diversity relationships for exponentially-bounded versus fat-tailed dispersal kernels, several levels of speciation rate and contrasting assumptions on recruitment at short dispersal distances. We found that the ratio of survey area to landscape size is a major determinant of dispersaldiversity relationships. With increasing survey-to-landscape area ratio the dispersaldiversity relationship switches from monotonically increasing through a U-shaped pattern (with a local minimum) to a monotonically decreasing pattern. Therefore, we provide a continuous set of dispersaldiversity relationships, which contains the response shapes reported previously as extreme cases. We suggest the mean dispersal distance with the minimum of species diversity (minimizing dispersal distance) for a certain scenario as a key characteristic of dispersaldiversity relationships. We show that not only increasing mean dispersal distances, but also increasing variances of dispersal can enhance diversity at the local scale, given a diverse species pool at the metacommunity scale. In conclusion, the response of diversity to variations of dispersal capability at spatial scales of interest, e.g. conservation areas, can differ more widely than expected previously. Therefore, land use and conservation activities, which manipulate dispersal capability, need to consider the landscape context and potential species pools carefully.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Metacommunity, mainland-island system or island communities? : assessing the regional dynamics of plant communities in a fragmented landscape}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {36}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2012.07793.x}, pages = {842 -- 853}, year = {2013}, abstract = {Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among-patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape-scale. In this study, we used extensive field data from a fragmented, semi-arid landscape in Israel to parameterize a multi-species incidence-function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics - the metacommunity, the mainland-island, or the island communities type - best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch-matrix study landscape is best represented as a system of highly isolated island' communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33-60\% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Plant functional traits and community assembly along interacting gradients of productivity and fragmentation}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2013.08.002}, pages = {304 -- 318}, year = {2013}, abstract = {Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes. In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south-north productivity gradient. We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m x 0.25 m). All traits varied significantly along the S-N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S-N gradient. Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass). Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.}, language = {en} } @phdthesis{May2013, author = {May, Felix}, title = {Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68444}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33\% - 60\% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes.}, language = {en} } @article{KoernerPfestorfMayetal.2014, author = {Koerner, Katrin and Pfestorf, Hans and May, Felix and Jeltsch, Florian}, title = {Modelling the effect of belowground herbivory on grassland diversity}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {273}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.10.025}, pages = {79 -- 85}, year = {2014}, abstract = {One challenging question in ecology is to explain species coexistence in highly diverse temperate grassland plant communities. Within this context, a clear understanding of the consequences of belowground herbivory for the composition and the diversity of plant communities continue to elude ecologists. The existing body of empirical evidence reveals partly contradictory responses ranging from negative to neutral or positive effects of belowground herbivory on grassland diversity. To reveal possible mechanistic grounds for these discrepancies, we extended an existing simulation model of grassland communities based on plant functional types to include root herbivory. This enabled us to test the effects of different feeding modes that represent different herbivore guilds. For each belowground feeding mode, we systematically varied the intensity and frequency of herbivory events for three different levels of soil fertility both in the presence and absence of additional aboveground grazing. Our modelling approach successfully reproduced various empirically reported diversity responses, merely on the basis of the different feeding modes. Different levels of plant resource availability affected the strength, but not the direction of the belowground herbivory effects. The only exception was the scenario with low resource levels, which promoted neutral (neither positive nor negative) diversity responses for some of the feeding modes. Interestingly, aboveground biomass production was largely unaffected by diversity changes induced by belowground herbivory except in the case of selective feeding modes that were related to specific functional traits. Our findings provide possible explanations for the broad spectrum of belowground herbivory effects on plant community diversity. Furthermore, the presented theoretical modelling approach provides a suitable conceptual framework to better understand the complex linkage between plant community and belowground herbivory dynamics.}, language = {en} } @article{JeltschBlaumBroseetal.2013, author = {Jeltsch, Florian and Blaum, Niels and Brose, Ulrich and Chipperfield, Joseph D. and Clough, Yann and Farwig, Nina and Geissler, Katja and Graham, Catherine H. and Grimm, Volker and Hickler, Thomas and Huth, Andreas and May, Felix and Meyer, Katrin M. and Pagel, J{\"o}rn and Reineking, Bj{\"o}rn and Rillig, Matthias C. and Shea, Katriona and Schurr, Frank Martin and Schroeder, Boris and Tielb{\"o}rger, Katja and Weiss, Lina and Wiegand, Kerstin and Wiegand, Thorsten and Wirth, Christian and Zurell, Damaris}, title = {How can we bring together empiricists and modellers in functional biodiversity research?}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.01.001}, pages = {93 -- 101}, year = {2013}, abstract = {Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs.}, language = {en} } @article{GiladiZivMayetal.2011, author = {Giladi, Itamar and Ziv, Yaron and May, Felix and Jeltsch, Florian}, title = {Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem}, series = {Journal of vegetation science}, volume = {22}, journal = {Journal of vegetation science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2011.01309.x}, pages = {983 -- 996}, year = {2011}, abstract = {Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large-scale determinants of species richness in a fragmented agro-ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro-ecosystem in the Southern Judea Lowland, Israel, within a desert-Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225m(2)). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale-dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale-dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi-factorial approach and multi-scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.}, language = {en} } @misc{GiladiMayRistowetal.2014, author = {Giladi, Itamar and May, Felix and Ristow, Michael and Jeltsch, Florian and Ziv, Yaron}, title = {Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12299}, pages = {1055 -- 1069}, year = {2014}, abstract = {Aim Patterns that relate species richness with fragment area (the species-area relationship, SAR) and with isolation (the species-isolation relationship, SIR) are well documented. However, those that relate species density - the number of species within a standardized area - with fragment area (D-SAR) or isolation (D-SIR) have not been sufficiently explored, despite the potential for such an analysis to disentangle the underlying mechanisms of SARs and SIRs. Previous spatial theory predicts that a significant D-SAR or D-SIR is unlikely to emerge in taxa with high dispersal limitation, such as plants. Furthermore, a recent model predicts that the detection and the significance of D-SARs or D-SIRs may decrease with grain size. We combined a literature review with grain size-dependent sampling in a fragmented landscape to evaluate the prevalence and grain size-dependent nature of D-SARs and D-SIRs in plants. Location Worldwide (review) and a semi-arid agro-ecosystem in Israel (case study). Methods We combined an extensive literature review of 31 D-SAR studies of plants in fragmented landscapes with an empirical study in which we analysed grain size-dependent D-SARs and D-SIRs using a grain size-dependent hierarchical sampling of species density and species richness in a fragmented, semi-arid agro-ecosystem. Results We found that significantly increasing D-SARs are rare in plant studies. Furthermore, we found that the detection of a significant D-SAR is often possible only after the data have been stratified by species, habitat or landscape characteristics. The results from our case study indicated that the significance and the slopes of both D-SARs and D-SIRs increase as grain size decreases. Main conclusions These results call for a careful consideration of scale while analysing and interpreting the responses of species richness and species density to fragmentation. Our results suggest that grain size-dependent analyses of D-SARs and D-SIRs may help to disentangle the mechanisms that generate SARs and SIRs and may enable early detection of the effects of fragmentation on plant biodiversity.}, language = {en} }