@misc{WessigJohnSperlichetal.2020, author = {Wessig, Pablo and John, Leonard and Sperlich, Eric and Kelling, Alexandra}, title = {Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56624}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566241}, pages = {15}, year = {2020}, abstract = {The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides).}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @article{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202202363}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @article{GonzalezChavarriaDupratRoaetal.2020, author = {Gonzalez-Chavarria, Ivan and Duprat, Felix and Roa, Francisco J. and Jara, Nery and Toledo, Jorge R. and Miranda, Felipe and Becerra, Jose and Inostroza, Alejandro and Kelling, Alexandra and Schilde, Uwe and Heydenreich, Matthias and Paz, Cristian}, title = {Maytenus disticha extract and an isolated β-Dihydroagarofuran induce mitochondrial depolarization and apoptosis in human cancer cells by increasing mitochondrial reactive oxygen species}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom10030377}, pages = {15}, year = {2020}, abstract = {Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. beta-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (mu g/mL) of 40, 4.7, and 5 mu g/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The beta-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-beta-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 mu M, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the beta-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{KwesigaKellingKerstingetal.2020, author = {Kwesiga, George and Kelling, Alexandra and Kersting, Sebastian and Sperlich, Eric and von Nickisch-Rosenegk, Markus and Schmidt, Bernd}, title = {Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity}, series = {Journal of natural products}, volume = {83}, journal = {Journal of natural products}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.0c00932}, pages = {3445 -- 3453}, year = {2020}, abstract = {The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.}, language = {en} } @article{WessigBadetkoCzarneckietal.2022, author = {Wessig, Pablo and Badetko, Dominik and Czarnecki, Maciej and Wichterich, Lukas and Schmidt, Peter and Brudy, Cosima and Sperlich, Eric and Kelling, Alexandra}, title = {Studies toward the total synthesis of arylnaphthalene lignans via a Photo-Dehydro-Diels-Alder (PDDA) reaction}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.2c00195}, pages = {5904 -- 5915}, year = {2022}, abstract = {An efficient method for the preparation of arylnaphthalene lignans (ANLs) was developed, which is based on thePhoto-Dehydro-DIELS-ALDER(PDDA) reaction. While intermolecular PDDA reactions turned out to be inefficient, theintramolecular variant using suberic acid as tether linking two aryl propiolic esters smoothly provided naphthalenophanes. Theirradiations were performed with a previously developed annular continuous-flow reactor and UVB lamps. In this way, the naturalproducts Alashinol D, Taiwanin C, and an unnamed ANL could be prepared.}, language = {en} } @article{BalischewskiBehrensZehbeetal.2020, author = {Balischewski, Christian and Behrens, Karsten and Zehbe, Kerstin and G{\"u}nter, Christina and Mies, Stefan and Sperlich, Eric and Kelling, Alexandra and Taubert, Andreas}, title = {Ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {26}, journal = {Chemistry - a European journal}, number = {72}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202003097}, pages = {17504 -- 17513}, year = {2020}, abstract = {Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V.}, language = {en} }