@article{GulbinsPalmadaReicheletal.2013, author = {Gulbins, Erich and Palmada, Monica and Reichel, Martin and Lueth, Anja and Boehmer, Christoph and Amato, Davide and Mueller, Christian P. and Tischbirek, Carsten H. and Groemer, Teja W. and Tabatabai, Ghazaleh and Becker, Katrin Anne and Tripal, Philipp and Staedtler, Sven and Ackermann, Teresa F. and van Brederode, Johannes and Alzheimer, Christian and Weller, Michael and Lang, Undine E. and Kleuser, Burkhard and Grassme, Heike and Kornhuber, Johannes}, title = {Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs}, series = {Nature medicine}, volume = {19}, journal = {Nature medicine}, number = {7}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1078-8956}, doi = {10.1038/nm.3214}, pages = {934 -- +}, year = {2013}, abstract = {Major depression is a highly prevalent severe mood disorder that is treated with antidepressants. The molecular targets of antidepressants require definition. We investigated the role of the acid sphingomyelinase (Asm)-ceramide system as a target for antidepressants. Therapeutic concentrations of the antidepressants amitriptyline and fluoxetine reduced Asm activity and ceramide concentrations in the hippocampus, increased neuronal proliferation, maturation and survival and improved behavior in mouse models of stress-induced depression. Genetic Asm deficiency abrogated these effects. Mice overexpressing Asm, heterozygous for acid ceramidase, treated with blockers of ceramide metabolism or directly injected with C16 ceramide in the hippocampus had higher ceramide concentrations and lower rates of neuronal proliferation, maturation and survival compared with controls and showed depression-like behavior even in the absence of stress. The decrease of ceramide abundance achieved by antidepressant-mediated inhibition of Asm normalized these effects. Lowering ceramide abundance may thus be a central goal for the future development of antidepressants.}, language = {en} } @article{PewznerJungTabazavarehGrassmeetal.2014, author = {Pewzner-Jung, Yael and Tabazavareh, Shaghayegh Tavakoli and Grassme, Heike and Becker, Katrin Anne and Japtok, Lukasz and Steinmann, Joerg and Joseph, Tammar and Lang, Stephan and Tuemmler, Burkhard and Schuchman, Edward H. and Lentsch, Alex B. and Kleuser, Burkhard and Edwards, Michael J. and Futerman, Anthony H. and Gulbins, Erich}, title = {Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa}, series = {EMBO molecular medicine}, volume = {6}, journal = {EMBO molecular medicine}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201404075}, pages = {1205 -- 1214}, year = {2014}, abstract = {Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P.aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P.aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection.}, language = {en} } @article{NeuberSchumacherGulbinsetal.2014, author = {Neuber, Corinna and Schumacher, Fabian and Gulbins, Erich and Kleuser, Burkhard}, title = {Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac501677y}, pages = {9065 -- 9073}, year = {2014}, abstract = {Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjogren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatographyelectrospray ionizationquadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjogren-Larsson syndrome, in more detail.}, language = {en} } @article{ReichelHoenigLiebischetal.2015, author = {Reichel, Martin and Hoenig, Stefanie and Liebisch, Gerhard and L{\"u}th, Anja and Kleuser, Burkhard and Gulbins, Erich and Schmitz, Gerd and Kornhuber, Johannes}, title = {Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients}, series = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, volume = {1851}, journal = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1388-1981}, doi = {10.1016/j.bbalip.2015.08.005}, pages = {1501 -- 1510}, year = {2015}, abstract = {Background: Alcohol abuse is a major risk factor for somatic and neuropsychiatric diseases. Despite their potential clinical importance, little is known about the alterations of plasma glycerophospholipid (GPL) and sphingolipid (SPL) species associated with alcohol abuse. Methods: Plasma GPL and SPL species were quantified using electrospray ionization tandem mass spectrometry in samples from 23 male alcohol-dependent patients before and after detoxification, as well as from 20 healthy male controls. Results: A comparison of alcohol-dependent patients with controls revealed higher phosphatidylcholine (PC; P-value = 0.008) and phosphatidylinositol (PI; P-value = 0.001) concentrations in patients before detoxification, and higher PI (P-value = 0.001) and phosphatidylethanolamine (PE)-based plasmalogen (PEP; P-value = 0.003) concentrations after detoxification. Lysophosphatidylcholines (LPC) were increased by acute intoxication (P-value = 0.002). Sphingomyelin (SM) concentration increased during detoxification (P-value = 0.011). The concentration of SM 23:0 was lower in patients (P-value = 2.79 x 10(-5)), and the concentrations of ceramide Cer d18:1/16:0 and Cer d18:1/18:0 were higher in patients (P-value = 2.45 x 10(-5) and 3.73 x 10(-5)). Activity of lysosomal acid sphingomyelinase (ASM) in patients correlated positively with the concentrations of eight LPC species, while activity of secreted ASM was inversely correlated with several PE, PI and PC species, and positively correlated with the molar ratio of PC to SM (Pearson's r = 0.432; P-value = 0.039). Conclusion: Plasma concentrations of numerous GPL and SPL species were altered in alcohol-dependent patients. These molecules might serve as potential biomarkers to improve the diagnosis of patients and to indicate health risks associated with alcohol abuse. Our study further indicates that there are strong interactions between plasma GPL concentrations and SPL metabolism. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{HenryNeillBeckeretal.2015, author = {Henry, Brian D. and Neill, Daniel R. and Becker, Katrin Anne and Gore, Suzanna and Bricio-Moreno, Laura and Ziobro, Regan and Edwards, Michael J. and Muehlemann, Kathrin and Steinmann, Joerg and Kleuser, Burkhard and Japtok, Lukasz and Luginbuehl, Miriam and Wolfmeier, Heidi and Scherag, Andre and Gulbins, Erich and Kadioglu, Aras and Draeger, Annette and Babiychuk, Eduard B.}, title = {Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice}, series = {Nature biotechnology : the science and business of biotechnology}, volume = {33}, journal = {Nature biotechnology : the science and business of biotechnology}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1087-0156}, doi = {10.1038/nbt.3037}, pages = {81 -- U295}, year = {2015}, abstract = {Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance.}, language = {en} } @article{CarpinteiroBeckerJaptoketal.2015, author = {Carpinteiro, Alexander and Becker, Katrin Anne and Japtok, Lukasz and Hessler, Gabriele and Keitsch, Simone and Pozgajova, Miroslava and Schmid, Kurt W. and Adams, Constantin and M{\"u}ller, Stefan and Kleuser, Burkhard and Edwards, Michael J. and Grassme, Heike and Helfrich, Iris and Gulbins, Erich}, title = {Regulation of hematogenous tumor metastasis by acid sphingomyelinase}, series = {EMBO molecular medicine}, volume = {7}, journal = {EMBO molecular medicine}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-4676}, pages = {714 -- 734}, year = {2015}, abstract = {Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90\% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1(-/-) mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of 51 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C-16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing 1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.}, language = {en} } @article{SchumacherChakrabortyKleuseretal.2015, author = {Schumacher, Fabian and Chakraborty, Sudipta and Kleuser, Burkhard and Gulbins, Erich and Schwerdtle, Tanja and Aschner, Michael A. and Bornhorst, Julia}, title = {Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans}, series = {Talanta : the international journal of pure and applied analytical chemistry}, volume = {144}, journal = {Talanta : the international journal of pure and applied analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-9140}, doi = {10.1016/j.talanta.2015.05.057}, pages = {71 -- 79}, year = {2015}, abstract = {Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{NojimaKonishiFreemanetal.2016, author = {Nojima, Hiroyuki and Konishi, Takanori and Freeman, Christopher M. and Schuster, Rebecca M. and Japtok, Lukasz and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich and Lentsch, Alex B.}, title = {Chemokine receptors, CXCR1 and CXCR2, differentially regulate exosome release in hepatocytes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {538}, issn = {1866-8372}, doi = {10.25932/publishup-41088}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410885}, pages = {15}, year = {2016}, abstract = {Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect.}, language = {en} } @article{HustonKornhuberMuehleetal.2016, author = {Huston, Joseph P. and Kornhuber, Johannes and Muehle, Christiane and Japtok, Lukasz and Komorowski, Mara and Mattern, Claudia and Reichel, Martin and Gulbins, Erich and Kleuser, Burkhard and Topic, Bianca and Silva, Maria A. De Souza and Mueller, Christian P.}, title = {A sphingolipid mechanism for behavioral extinction}, series = {Journal of neurochemistry}, volume = {137}, journal = {Journal of neurochemistry}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-3042}, doi = {10.1111/jnc.13537}, pages = {589 -- 603}, year = {2016}, abstract = {Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions.}, language = {en} } @article{HollmannWernerAvotaetal.2016, author = {Hollmann, Claudia and Werner, Sandra and Avota, Elita and Reuter, Dajana and Japtok, Lukasz and Kleuser, Burkhard and Gulbins, Erich and Becker, Katrin Anne and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4(+) Conventional versus Foxp3(+) Regulatory T Cells}, series = {The journal of immunology}, volume = {197}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, doi = {10.4049/jimmunol.1600691}, pages = {3130 -- 3141}, year = {2016}, abstract = {CD4(+) Foxp3(+) regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4(+) T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1(-/-); Asm(-/-)) mice, as compared with wt mice, the frequency of Tregs among CD4(+) T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8(+) T cells in brains of Asm(-/-) mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4(+) T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders.}, language = {en} }