@misc{RamirezCampilloAlvarezGarciaHermosoetal.2018, author = {Ramirez-Campillo, Rodrigo and Alvarez, Cristian and Garcia-Hermoso, Antonio and Ramirez-Velez, Robinson and Gentil, Paulo and Asadi, Abbas and Chaabene, Helmi and Moran, Jason and Meylan, Cesar and Garcia-de-Alcaraz, Antonio and Sanchez-Sanchez, Javier and Nakamura, Fabio Y. and Granacher, Urs and Kraemer, William and Izquierdo, Mikel}, title = {Methodological characteristics and future directions for plyometric jump training research}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {5}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0870-z}, pages = {1059 -- 1081}, year = {2018}, abstract = {Recently, there has been a proliferation of published articles on the effect of plyometric jump training, including several review articles and meta-analyses. However, these types of research articles are generally of narrow scope. Furthermore, methodological limitations among studies (e.g., a lack of active/passive control groups) prevent the generalization of results, and these factors need to be addressed by researchers. On that basis, the aims of this scoping review were to (1) characterize the main elements of plyometric jump training studies (e.g., training protocols) and (2) provide future directions for research. From 648 potentially relevant articles, 242 were eligible for inclusion in this review. The main issues identified related to an insufficient number of studies conducted in females, youths, and individual sports (~ 24.0, ~ 37.0, and ~ 12.0\% of overall studies, respectively); insufficient reporting of effect size values and training prescription (~ 34.0 and ~ 55.0\% of overall studies, respectively); and studies missing an active/passive control group and randomization (~ 40.0 and ~ 20.0\% of overall studies, respectively). Furthermore, plyometric jump training was often combined with other training methods and added to participants' daily training routines (~ 47.0 and ~ 39.0\% of overall studies, respectively), thus distorting conclusions on its independent effects. Additionally, most studies lasted no longer than 7 weeks. In future, researchers are advised to conduct plyometric training studies of high methodological quality (e.g., randomized controlled trials). More research is needed in females, youth, and individual sports. Finally, the identification of specific dose-response relationships following plyometric training is needed to specifically tailor intervention programs, particularly in the long term.}, language = {en} } @misc{GaeblerPrieskeHortobagyietal.2018, author = {Gaebler, Martijn and Prieske, Olaf and Hortobagyi, Tibor and Granacher, Urs}, title = {The effects of concurrent strength and endurance training on physical fitness and athletic performance in Youth}, series = {Frontiers in physiology}, volume = {9}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01057}, pages = {13}, year = {2018}, abstract = {Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6-11 years, boys age 6-13 years) or adolescents (girls age 12-18 years, boys age 14-18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power-(e.g., jump height), endurance-(e.g., peak. VO2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth.}, language = {en} } @misc{GebelLesinskiBehmetal.2018, author = {Gebel, Arnd and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Effects and dose-response relationship of balance training on balance performance in Youth}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {9}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0926-0}, pages = {2067 -- 2089}, year = {2018}, abstract = {Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83\%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity.}, language = {en} } @misc{MoranRamirezCampilloGranacher2018, author = {Moran, Jason and Ramirez-Campillo, Rodrigo and Granacher, Urs}, title = {Effects of Jumping Exercise on Muscular Power in Older Adults}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {12}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-1002-5}, pages = {2843 -- 2857}, year = {2018}, abstract = {Background Jump training (JT) can be used to enhance the ability of skeletal muscle to exert maximal force in as short a time as possible. Despite its usefulness as a method of performance enhancement in athletes, only a small number of studies have investigated its effects on muscle power in older adults. Objectives The aims of this meta-analysis were to measure the effect of JT on muscular power in older adults (≥ 50 years), and to establish appropriate programming guidelines for this population. Data Sources The data sources utilised were Google Scholar, PubMed, and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if they comprised JT interventions in healthy adults (≥ 50 years) who were free of any medical condition that could impair movement. Study Appraisal and Synthesis Methods The inverse variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis while accounting for heterogeneity across studies. Effect sizes (ESs), calculated from a measure of muscular power, were represented by the standardised mean difference and were presented alongside 95\% confidence intervals (CIs). Results Thirteen training groups across nine studies were included in this meta-analysis. The magnitude of the main effect was 'moderate' (0.66, 95\% CI 0.33, 0.98). ESs were larger in non-obese participants (body mass index [BMI] < 30 vs. ≥ 30 kg/m2; 1.03 [95\% CI 0.34, 1.73] vs. 0.53 [95\% CI - 0.03, 1.09]). Among the studies included in this review, just one reported an acute injury, which did not result in the participant ceasing their involvement. JT was more effective in programmes with more than one exercise (range 1-4 exercises; ES = 0.74 [95\% CI - 0.49, 1.96] vs. 0.53 [95\% CI 0.29, 0.78]), more than two sets per exercise (range 1-4 sets; ES = 0.91 [95\% CI 0.04, 1.77] vs. 0.68 [95\% CI 0.15, 1.21]), more than three jumps per set (range 1-14 jumps; ES = 1.02 [95\% CI 0.16, 1.87] vs. 0.53 [95\% CI - 0.03, 1.09]) and more than 25 jumps per session (range 6-200 jumps; ES = 0.88 [95\% CI 0.05, 1.70] vs. 0.49 [95\% CI 0.14, 0.83]). Conclusions JT is safe and effective in older adults. Practitioners should construct varied JT programmes that include more than one exercise and comprise more than two sets per exercise, more than three jumps per set, and 60 s of recovery between sets. An upper limit of three sets per exercise and ten jumps per set is recommended. Up to three training sessions per week can be performed.}, language = {en} } @misc{BehmYoungWhittenetal.2017, author = {Behm, David George and Young, James D. and Whitten, Joseph H. D. and Reid, Jonathan C. and Quigley, Patrick J. and Low, Jonathan and Li, Yimeng and Lima, Camila D. and Hodgson, Daniel D. and Chaouachi, Anis and Prieske, Olaf and Granacher, Urs}, title = {Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00423}, pages = {37}, year = {2017}, abstract = {Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities.}, language = {en} } @misc{WickLeegerAschmannMonnetal.2017, author = {Wick, Kristin and Leeger-Aschmann, Claudia S. and Monn, Nico D. and Radtke, Thomas and Ott, Laura V. and Rebholz, Cornelia E. and Cruz, Sergio and Gerber, Natalie and Schmutz, Einat A. and Puder, Jardena J. and Munsch, Simone and Kakebeeke, Tanja H. and Jenni, Oskar G. and Granacher, Urs and Kriemler, Susi}, title = {Interventions to Promote Fundamental Movement Skills in Childcare and Kindergarten: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {47}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-017-0723-1}, pages = {2045 -- 2068}, year = {2017}, abstract = {Background Proficiency in fundamental movement skills (FMS) lays the foundation for being physically active and developing more complex motor skills. Improving these motor skills may provide enhanced opportunities for the development of a variety of perceptual, social, and cognitive skills. Objective The objective of this systematic review and meta-analysis was to assess the effects of FMS interventions on actual FMS, targeting typically developing young children. Method Searches in seven databases (CINAHL, Embase, MEDLINE, PsycINFO, PubMed, Scopus, Web of Science) up to August 2015 were completed. Trials with children (aged 2-6 years) in childcare or kindergarten settings that applied FMS-enhancing intervention programs of at least 4 weeks and meeting the inclusion criteria were included. Standardized data extraction forms were used. Risk of bias was assessed using a standard scoring scheme (Effective Public Health Practice Project-Quality Assessment Tool for Quantitative Studies [EPHPP]). We calculated effects on overall FMS, object control and locomotor subscales (OCS and LMS) by weighted standardized mean differences (SMDbetween) using random-effects models. Certainty in training effects was evaluated using GRADE (Grading of Recommendations Assessment, Development, and Evaluation System). Results Thirty trials (15 randomized controlled trials and 15 controlled trials) involving 6126 preschoolers (aged 3.3-5.5 years) revealed significant differences among groups in favor of the intervention group (INT) with small-to-large effects on overall FMS (SMDbetween 0.46), OCS (SMDbetween 1.36), and LMS (SMDbetween 0.94). Our certainty in the treatment estimates based on GRADE is very low. Conclusions Although there is relevant effectiveness of programs to improve FMS proficiency in healthy young children, they need to be interpreted with care as they are based on low-quality evidence and immediate post-intervention effects without long-term follow-up.}, language = {en} } @misc{LesinskiHortobagyiMuehlbaueretal.2015, author = {Lesinski, Melanie and Hortobagyi, Tibor and M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {45}, journal = {Sports medicine}, number = {4}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-014-0284-5}, pages = {557 -- 576}, year = {2015}, abstract = {Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT.}, language = {en} } @misc{BeijersbergenGranacherVandervoortetal.2013, author = {Beijersbergen, Chantal M. I. and Granacher, Urs and Vandervoort, A. A. and DeVita, P. and Hortobagyi, Tibor}, title = {The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown}, series = {Ageing research reviews : ARR}, volume = {12}, journal = {Ageing research reviews : ARR}, number = {2}, publisher = {Elsevier}, address = {Clare}, issn = {1568-1637}, doi = {10.1016/j.arr.2013.03.001}, pages = {618 -- 627}, year = {2013}, abstract = {Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22\% and 12\% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19\% and 9\% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35\% and 13\% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions.}, language = {en} } @misc{GranacherGollhoferHortobagyietal.2013, author = {Granacher, Urs and Gollhofer, Albert and Hortobagyi, Tibor and Kressig, Reto W. and M{\"u}hlbauer, Thomas}, title = {The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review}, series = {Sports medicine}, volume = {43}, journal = {Sports medicine}, number = {7}, publisher = {Springer}, address = {Auckland}, issn = {0112-1642}, doi = {10.1007/s40279-013-0041-1}, pages = {627 -- 641}, year = {2013}, abstract = {Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 \%, mean effect size = 0.99; mean balance/functional performance gain = 23 \%, mean ES = 0.88) and by PET (mean strength gain = 12 \%, mean ES = 0.52; mean balance/functional performance gain = 18 \%, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.}, language = {en} }