@article{WolterLantuitWetterichetal.2018, author = {Wolter, Juliane and Lantuit, Hugues and Wetterich, Sebastian and Rethemeyer, Janet and Fritz, Michael}, title = {Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1977}, pages = {164 -- 181}, year = {2018}, abstract = {Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming.}, language = {en} } @article{WolterLantuitHerzschuhetal.2017, author = {Wolter, Juliane and Lantuit, Hugues and Herzschuh, Ulrike and Stettner, Samuel and Fritz, Michael}, title = {Tundra vegetation stability versus lake-basin variability on the Yukon Coastal Plain (NW Canada) during the past three centuries}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {27}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683617708441}, pages = {1846 -- 1858}, year = {2017}, language = {en} } @article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{TanskiLantuitRuttoretal.2017, author = {Tanski, George and Lantuit, Hugues and Ruttor, Saskia and Knoblauch, Christian and Radosavljevic, Boris and Strauß, Jens and Wolter, Juliane and Irrgang, Anna Maria and Ramage, Justine Lucille and Fritz, Michael}, title = {Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {581}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2016.12.152}, pages = {434 -- 447}, year = {2017}, abstract = {The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (delta C-13-TOC, delta C-13-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, delta C-13 signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty adds, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55\% and a TN and DN loss of 53 and 48\%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source.}, language = {en} } @article{TanskiCoutureLantuitetal.2016, author = {Tanski, George and Couture, Nicole and Lantuit, Hugues and Eulenburg, Antje and Fritz, Michael}, title = {Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean}, series = {Global biogeochemical cycles}, volume = {30}, journal = {Global biogeochemical cycles}, publisher = {American Geophysical Union}, address = {Cambridge}, issn = {0886-6236}, doi = {10.1002/2015GB005337}, pages = {1054 -- 1068}, year = {2016}, abstract = {Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0mgL(-1) with an estimated stock of 13.63.0gm(-3) along the YC. An annual DOC flux of 54.90.9Mgyr(-1) was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.}, language = {en} } @article{TanskiBergstedtBevingtonetal.2019, author = {Tanski, George and Bergstedt, Helena and Bevington, Alexandre and Bonnaventure, Philip and Bouchard, Frederic and Coch, Caroline and Dumais, Simon and Evgrafova, Alevtina and Frauenfeld, Oliver W. and Frederick, Jennifer and Fritz, Michael and Frolov, Denis and Harder, Silvie and Hartmeyer, Ingo and Heslop, Joanne and Hoegstroem, Elin and Johansson, Margareta and Kraev, Gleb and Kuznetsova, Elena and Lenz, Josefine and Lupachev, Alexey and Magnin, Florence and Martens, Jannik and Maslakov, Alexey and Morgenstern, Anne and Nieuwendam, Alexandre and Oliva, Marc and Radosavljevi, Boris and Ramage, Justine Lucille and Schneider, Andrea and Stanilovskaya, Julia and Strauss, Jens and Trochim, Erin and Vecellio, Daniel J. and Weber, Samuel and Lantuit, Hugues}, title = {The Permafrost Young Researchers Network (PYRN) is getting older}, series = {Polar record}, volume = {55}, journal = {Polar record}, number = {4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0032-2474}, doi = {10.1017/S0032247418000645}, pages = {216 -- 219}, year = {2019}, abstract = {A lasting legacy of the International Polar Year (IPY) 2007-2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN's development since 2005 and the IPY's role, (2) the first 2015 PYRN census and survey results, and (3) PYRN's future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN's successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.}, language = {en} } @article{TanskiWagnerKnoblauchetal.2019, author = {Tanski, Georg and Wagner, Dirk and Knoblauch, Christian and Fritz, Michael and Sachs, Torsten and Lantuit, Hugues}, title = {Rapid CO2 Release From Eroding Permafrost in Seawater}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {20}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL084303}, pages = {11244 -- 11252}, year = {2019}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and flooding-threats to coastal Infrastructure in the Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {996}, issn = {1866-8372}, doi = {10.25932/publishup-43227}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432279}, pages = {18}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 m·a⁻¹ (mean -0.6 m·a⁻¹). Mean coastal retreat decreased from -0.6 m·a⁻¹ to -0.5 m·a⁻¹, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a⁻¹ in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding - Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada (vol 39, pg 900, 2016)}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-016-0115-z}, pages = {1294 -- 1295}, year = {2016}, language = {en} } @article{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding-Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-015-0046-0}, pages = {900 -- 915}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 mI double dagger a(-1) (mean -0.6 mI double dagger a(-1)). Mean coastal retreat decreased from -0.6 mI double dagger a(-1) to -0.5 mI double dagger a(-1), for 1952-1970 and 1970-2000, respectively, and increased to -1.3 mI double dagger a(-1) in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} }