@article{GrimmMeyerCzaplaetal.2013, author = {Grimm, Christiane and Meyer, Thomas and Czapla, Sylvia and Nikolaus, J{\"o}rg and Scheidt, Holger A. and Vogel, Alexander and Herrmann, Andreas and Wessig, Pablo and Huster, Daniel and M{\"u}ller, Peter}, title = {Structure and dynamics of molecular rods in membranes application of a Spin-Labeled rod}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201202500}, pages = {2703 -- 2710}, year = {2013}, abstract = {Molecular rods consisting of a hydrophobic backbone and terminally varying functional groups have been synthesized for applications for the functionalization of membranes. In the present study, we employ a spin-labeled analogue of a recently described new class of molecular rods to characterize their dynamic interactions with membranes. By using the different approaches of ESR and NMR spectroscopy, we show that the spin moiety of the membrane-embedded spin-labeled rod is localized in the upper chain/glycerol region of membranes of different compositions. The rod is embedded within the membrane in a tilted orientation to adjust for the varying hydrophobic thicknesses of these bilayers. This orientation does not perturb the membrane structure. The water solubility of the rod is increased significantly in the presence of certain cyclodextrins. These cyclodextrins also allow the rods to be extracted from the membrane and incorporated into preformed membranes. The latter will improve the future applications of these rods in cellular systems as stable membrane-associated anchors for the functionalization of membrane surfaces.}, language = {en} } @article{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-36879-y}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @misc{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {648}, issn = {1866-8372}, doi = {10.25932/publishup-42504}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425040}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @article{HaralampievMertensSchwarzeretal.2015, author = {Haralampiev, Ivan and Mertens, Monique and Schwarzer, Roland and Herrmann, Andreas and Volkmer, Rudolf and Wessig, Pablo and Mueller, Peter}, title = {Recruitment of SH-Containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a Maleimide Group}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201408089}, pages = {323 -- 326}, year = {2015}, abstract = {This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells.}, language = {en} } @article{BoboneHilschStormetal.2017, author = {Bobone, Sara and Hilsch, Malte and Storm, Julian and Dunsing, Valentin and Herrmann, Andreas and Chiantia, Salvatore}, title = {Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes}, series = {Journal of virology}, volume = {91}, journal = {Journal of virology}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0022-538X}, doi = {10.1128/JVI.00267-17}, pages = {15}, year = {2017}, abstract = {Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Forster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N\&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N\&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.}, language = {en} } @article{GoetzSuopankiSchuleretal.2005, author = {Goetz, C. and Suopanki, J. and Schuler, Benjamin and Wanker, E. and Herrmann, Andreas}, title = {Perturbation of brain lipid membrane by soluble Huntingtin depends on its polyproline tract}, issn = {0006-3495}, year = {2005}, language = {en} } @article{DunsingLucknerZuehlkeetal.2018, author = {Dunsing, Valentin and Luckner, Madlen and Zuehlke, Boris and Petazzi, Roberto Arturo and Herrmann, Andreas and Chiantia, Salvatore}, title = {Optimal fluorescent protein tags for quantifying protein oligomerization in living cells}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-28858-0}, pages = {12}, year = {2018}, abstract = {Fluorescence fluctuation spectroscopy has become a popular toolbox for non-disruptive analysis of molecular interactions in living cells. The quantification of protein oligomerization in the native cellular environment is highly relevant for a detailed understanding of complex biological processes. An important parameter in this context is the molecular brightness, which serves as a direct measure of oligomerization and can be easily extracted from temporal or spatial fluorescence fluctuations. However, fluorescent proteins (FPs) typically used in such studies suffer from complex photophysical transitions and limited maturation, inducing non-fluorescent states. Here, we show how these processes strongly affect molecular brightness measurements. We perform a systematic characterization of non-fluorescent states for commonly used FPs and provide a simple guideline for accurate, unbiased oligomerization measurements in living cells. Further, we focus on novel red FPs and demonstrate that mCherry2, an mCherry variant, possesses superior properties with regards to precise quantification of oligomerization.}, language = {en} } @inproceedings{MemczakLausterHerrmannetal.2013, author = {Memczak, Henry and Lauster, Daniel and Herrmann, Andreas and St{\"o}cklein, Walter F. M. and Bier, Frank Fabian}, title = {Novel hemagglutinin-binding peptides for biosensing and inhibition of Influenza Viruses}, series = {Biopolymers}, volume = {100}, booktitle = {Biopolymers}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0006-3525}, pages = {255 -- 255}, year = {2013}, language = {en} } @article{NikolausCzaplaMoellnitzetal.2011, author = {Nikolaus, J{\"o}rg and Czapla, Sylvia and M{\"o}llnitz, Kristian and H{\"o}fer, Chris T. and Herrmann, Andreas and Wessig, Pablo and M{\"u}ller, Peter}, title = {New molecular rods - Characterization of their interaction with membranes}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1808}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2011.08.008}, pages = {2781 -- 2788}, year = {2011}, abstract = {Molecular rods are synthetical molecules consisting of a hydrophobic backbone which are functionalized with varying terminal groups. Here, we report on the interaction of a recently described new class of molecular rods with lipid and biological membranes. In order to characterize this interaction, different fluorescently labeled rods were synthesized allowing for the application of fluorescence spectroscopy and microscopy based approaches. Our data show that the rods are incorporated into membranes with a perpendicular orientation to the membrane surface and enrich preferentially in liquid-disordered lipid domains. These characteristics underline that rods can be applied as stable membrane-associated anchors for functionalizing membrane surfaces.}, language = {en} } @article{MuellerNikolausSchilleretal.2009, author = {M{\"u}ller, Peter and Nikolaus, J{\"o}rg and Schiller, Sabine and Herrmann, Andreas and Moellnitz, Kristian and Czapla, Sylvia and Wessig, Pablo}, title = {Molecular rods with oligospiroketal backbones as anchors in biological membranes}, issn = {1433-7851}, doi = {10.1002/anie.200901133}, year = {2009}, abstract = {Getting stuck in: A hydrophobic molecular rod with terminal fluorescent moieties has been synthesized. The insertion of the rod into membranes was investigated and shown to incorporate efficiently into model and biological membranes (see picture; gray C, blue N, red O). Those rods can be used as stable membrane-associated anchors for functionalization of membrane surfaces.}, language = {en} }