@phdthesis{Cheng2024, author = {Cheng, Feng}, title = {Evolution and ontogeny of electric organ discharge in African weakly electric fish genus Campylomormyrus: a genomic and transcriptomic perspective}, doi = {10.25932/publishup-63017}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630172}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2024}, abstract = {The African weakly electric fishes (Mormyridae) exhibit a remarkable adaptive radiation possibly due to their species-specific electric organ discharges (EODs). It is produced by a muscle-derived electric organ that is located in the caudal peduncle. Divergence in EODs acts as a pre-zygotic isolation mechanism to drive species radiations. However, the mechanism behind the EOD diversification are only partially understood. The aim of this study is to explore the genetic basis of EOD diversification from the gene expression level across Campylomormyrus species/hybrids and ontogeny. I firstly produced a high quality genome of the species C. compressirostris as a valuable resource to understand the electric fish evolution. The next study compared the gene expression pattern between electric organs and skeletal muscles in Campylomormyrus species/hybrids with different types of EOD duration. I identified several candidate genes with an electric organ-specific expression, e.g. KCNA7a, KLF5, KCNJ2, SCN4aa, NDRG3, MEF2. The overall genes expression pattern exhibited a significant association with EOD duration in all analyzed species/hybrids. The expression of several candidate genes, e.g. KCNJ2, KLF5, KCNK6 and KCNQ5, possibly contribute to the regulation of EOD duration in Campylomormyrus due to their increasing or decreasing expression. Several potassium channel genes showed differential expression during ontogeny in species and hybrid with EOD alteration, e.g. KCNJ2. I next explored allele specific expression of intragenus hybrids by crossing the duration EOD species C. compressirostris with the medium duration EOD species C. tshokwe and the elongated duration EOD species C. rhynchophorus. The hybrids exhibited global expression dominance of the C. compressirostris allele in the adult skeletal muscle and electric organ, as well as in the juvenile electric organ. Only the gene KCNJ2 showed dominant expression of the allele from C. rhynchophorus, and this was increasingly dominant during ontogeny. It hence supported our hypothesis that KCNJ2 is a key gene of regulating EOD duration. Our results help us to understand, from a genetic perspective, how gene expression effect the EOD diversification in the African weakly electric fish.}, language = {en} } @phdthesis{Bulut2023, author = {Bulut, Mustafa}, title = {Assessing the genetic architecture underlying systemic responses to variable environments in crops using multi-omics}, school = {Universit{\"a}t Potsdam}, pages = {180, IV}, year = {2023}, abstract = {Plant metabolism serves as the primary mechanism for converting assimilated carbon into essential compounds crucial for plant growth and ultimately, crop yield. This renders it a focal point of research with significant implications. Despite notable strides in comprehending the genetic principles underpinning metabolism and yield, there remains a dearth of knowledge regarding the genetic factors responsible for trait variation under varying environmental conditions. Given the burgeoning global population and the advancing challenges posed by climate change, unraveling the intricacies of metabolic and yield responses to water scarcity became increasingly important in safeguarding food security. Our research group has recently started to work on the genetic resources of legume species. To this end, the study presented here investigates the metabolic diversity across five different legume species at a tissue level, identifying species-specific biosynthesis of alkaloids as well as iso-/flavonoids with diverse functional groups, namely prenylation, phenylacylation as well as methoxylation, to create a resource for follow up studies investigation the metabolic diversity in natural diverse populations of legume species. Following this, the second study investigates the genetic architecture of drought-induced changes in a global common bean population. Here, a plethora of quantitative trait loci (QTL) associated with various traits are identified by performing genome-wide association studies (GWAS), including for lipid signaling. On this site, overexpression of candidates highlighted the induction of several oxylipins reported to be pivotal in coping with harsh environmental conditions such as water scarcity. Diverging from the common bean and GWAS, the following study focuses on identifying drought-related QTL in tomato using a bi-parental breeding population. This descriptive study highlights novel multi-omic QTL, including metabolism, photosynthesis as well as fruit setting, some of which are uniquely assigned under drought. Compared to conventional approaches using the bi-parental IL population, the study presented improves the resolution by assessing further backcrossed ILs, named sub-ILs. In the final study, a photosynthetic gene, namely a PetM subunit of the cytochrome b6f complex encoding gene, involved in electron flow is characterized in an horticultural important crop. While several advances have been made in model organisms, this study highlights the transition of this fundamental knowledge to horticultural important crops, such as tomato, and investigates its function under differing light conditions. Overall, the presented thesis combines different strategies in unveiling the genetic components in multi-omic traits under drought using conventional breeding populations as well as a diverse global population. To this end, it allows a comparison of either approach and highlights their strengths and weaknesses.}, language = {en} } @phdthesis{Derežanin2023, author = {Derežanin, Lorena}, title = {Contribution of structural variation to adaptive evolution of mammalian genomes}, doi = {10.25932/publishup-59144}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591443}, school = {Universit{\"a}t Potsdam}, pages = {188}, year = {2023}, abstract = {Following the extinction of dinosaurs, the great adaptive radiation of mammals occurred, giving rise to an astonishing ecological and phenotypic diversity of mammalian species. Even closely related species often inhabit vastly different habitats, where they encounter diverse environmental challenges and are exposed to different evolutionary pressures. As a response, mammals evolved various adaptive phenotypes over time, such as morphological, physiological and behavioural ones. Mammalian genomes vary in their content and structure and this variation represents the molecular mechanism for the long-term evolution of phenotypic variation. However, understanding this molecular basis of adaptive phenotypic variation is usually not straightforward. The recent development of sequencing technologies and bioinformatics tools has enabled a better insight into mammalian genomes. Through these advances, it was acknowledged that mammalian genomes differ more, both within and between species, as a consequence of structural variation compared to single-nucleotide differences. Structural variant types investigated in this thesis - such as deletion, duplication, inversion and insertion, represent a change in the structure of the genome, impacting the size, copy number, orientation and content of DNA sequences. Unlike short variants, structural variants can span multiple genes. They can alter gene dosage, and cause notable gene expression differences and subsequently phenotypic differences. Thus, they can lead to a more dramatic effect on the fitness (reproductive success) of individuals, local adaptation of populations and speciation. In this thesis, I investigated and evaluated the potential functional effect of structural variations on the genomes of mustelid species. To detect the genomic regions associated with phenotypic variation I assembled the first reference genome of the tayra (Eira barbara) relying on linked-read sequencing technology to achieve a high level of genome completeness important for reliable structural variant discovery. I then set up a bioinformatics pipeline to conduct a comparative genomic analysis and explore variation between mustelid species living in different environments. I found numerous genes associated with species-specific phenotypes related to diet, body condition and reproduction among others, to be impacted by structural variants. Furthermore, I investigated the effects of artificial selection on structural variants in mice selected for high fertility, increased body mass and high endurance. Through selective breeding of each mouse line, the desired phenotypes have spread within these populations, while maintaining structural variants specific to each line. In comparison to the control line, the litter size has doubled in the fertility lines, individuals in the high body mass lines have become considerably larger, and mice selected for treadmill performance covered substantially more distance. Structural variants were found in higher numbers in these trait-selected lines than in the control line when compared to the mouse reference genome. Moreover, we have found twice as many structural variants spanning protein-coding genes (specific to each line) in trait-selected lines. Several of these variants affect genes associated with selected phenotypic traits. These results imply that structural variation does indeed contribute to the evolution of the selected phenotypes and is heritable. Finally, I suggest a set of critical metrics of genomic data that should be considered for a stringent structural variation analysis as comparative genomic studies strongly rely on the contiguity and completeness of genome assemblies. Because most of the available data used to represent reference genomes of mammalian species is generated using short-read sequencing technologies, we may have incomplete knowledge of genomic features. Therefore, a cautious structural variation analysis is required to minimize the effect of technical constraints. The impact of structural variants on the adaptive evolution of mammalian genomes is slowly gaining more focus but it is still incorporated in only a small number of population studies. In my thesis, I advocate the inclusion of structural variants in studies of genomic diversity for a more comprehensive insight into genomic variation within and between species, and its effect on adaptive evolution.}, language = {en} } @phdthesis{Autenrieth2020, author = {Autenrieth, Marijke}, title = {Population genomics of two odontocetes in the North Atlantic and adjacent waters}, school = {Universit{\"a}t Potsdam}, pages = {IX, 110}, year = {2020}, abstract = {Due to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whales provided a unique opportunity to investigate male grouping for the first time. Based on the mitochondrial control region, I was able to infer that male bachelor groups comprise multiple matrilines, hence derive from different social groups, and that they represent the genetic variability of the entire North Atlantic. The harbor porpoise (Phocoena phocoena) occurs only in the northern hemisphere. By being small and occurring mostly in coastal habitats it is especially prone to human disturbance. Since some subspecies and subpopulations are critically endangered, it is important to generate and provide genetic markers with high resolution to facilitate population assignment and subsequent protection measurements. Here, I provide the first harbour porpoise whole genome, in high quality and including a draft annotation. Using it for mapping ddRAD seq data, I identify genome wide SNPs and, together with a fragment of the mitochondrial control region, inferred the population structure of its North Atlantic distribution range. The Belt Sea harbors a distinct subpopulation oppose to the North Atlantic, with a transition zone in the Kattegat. Within the North Atlantic I could detect subtle genetic differentiation between western (Canada-Iceland) and eastern (North Sea) regions, with support for a German North Sea breading ground around the Isle of Sylt. Further, I was able to detect six outlier loci which show isolation by distance across the investigated sampling areas. In employing different markers, I could show that single maker systems as well as genome wide data can unravel new information about population affinities of odontocetes. Genome wide data can facilitate investigation of adaptations and evolutionary history of the species and its populations. Moreover, they facilitate population genetic investigations, providing a high resolution, and hence allowing for detection of subtle population structuring especially important for highly mobile cetaceans.}, language = {en} }