@article{CookLiCaietal.2019, author = {Cook, Katherine V. and Li, Chuang and Cai, Haiyuan and Krumholz, Lee R. and Hambright, K. David and Paerl, Hans W. and Steffen, Morgan M. and Wilson, Alan E. and Burford, Michele A. and Grossart, Hans-Peter and Hamilton, David P. and Jiang, Helong and Sukenik, Assaf and Latour, Delphine and Meyer, Elisabeth I. and Padisak, Judit and Qin, Boqiang and Zamor, Richard M. and Zhu, Guangwei}, title = {The global Microcystis interactome}, series = {Limnology and oceanography}, volume = {65}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11361}, pages = {S194 -- S207}, year = {2019}, abstract = {Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280 degrees longitudinal and 90 degrees latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.}, language = {en} } @article{NumbergerRiedelMcEwenetal.2019, author = {Numberger, Daniela and Riedel, Thomas and McEwen, Gayle and N{\"u}bel, Ulrich and Frentrup, Martinique and Schober, Isabel and Bunk, Boyke and Spr{\"o}er, Cathrin and Overmann, J{\"o}rg and Grossart, Hans-Peter and Greenwood, Alex D.}, title = {Genomic analysis of three Clostridioides difficile isolates from urban water sources}, series = {Anaerobe}, volume = {56}, journal = {Anaerobe}, publisher = {Elsevier}, address = {Oxford}, issn = {1075-9964}, doi = {10.1016/j.anaerobe.2019.01.002}, pages = {22 -- 26}, year = {2019}, abstract = {We investigated inflow of a wastewater treatment plant and sediment of an urban lake for the presence of Clostridioides difficile by cultivation and PCR. Among seven colonies we sequenced the complete genomes of three: two non-toxigenic isolates from wastewater and one toxigenic isolate from the urban lake. For all obtained isolates, a close genomic relationship with human-derived isolates was observed. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{GrossartMassanaMcMahonetal.2019, author = {Grossart, Hans-Peter and Massana, Ramon and McMahon, Katherine D. and Walsh, David A.}, title = {Linking metagenomics to aquatic microbial ecology and biogeochemical cycles}, series = {Limnology and oceanography}, volume = {65}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11382}, pages = {S2 -- S20}, year = {2019}, abstract = {Microbial communities are essential components of aquatic ecosystems through their contribution to food web dynamics and biogeochemical processes. Aquatic microbial diversity is immense and a general challenge is to understand how metabolism and interactions of single organisms shape microbial community dynamics and ecosystem-scale biogeochemical transformations. Metagenomic approaches have developed rapidly, and proven to be powerful in linking microbial community dynamics to biogeochemical processes. In this review, we provide an overview of metagenomic approaches, followed by a discussion on some recent insights they have provided, including those in this special issue. These include the discovery of new taxa and metabolisms in aquatic microbiomes, insights into community assembly and functional ecology as well as evolutionary processes shaping microbial genomes and microbiomes, and the influence of human activities on aquatic microbiomes. Given that metagenomics can now be considered a mature technology where data generation and descriptive analyses are relatively routine and informative, we then discuss metagenomic-enabled research avenues to further link microbial dynamics to biogeochemical processes. These include the integration of metagenomics into well-designed ecological experiments, the use of metagenomics to inform and validate metabolic and biogeochemical models, and the pressing need for ecologically relevant model organisms and simple microbial systems to better interpret the taxonomic and functional information integrated in metagenomes. These research avenues will contribute to a more mechanistic and predictive understanding of links between microbial dynamics and biogeochemical cycles. Owing to rapid climate change and human impacts on aquatic ecosystems, the urgency of such an understanding has never been greater.}, language = {en} } @article{PerkinsGanzertRojasJimenezetal.2019, author = {Perkins, Anita K. and Ganzert, Lars and Rojas-Jimenez, Keilor and Fonvielle, Jeremy Andre and Hose, Grant C. and Grossart, Hans-Peter}, title = {Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany}, series = {Fungal ecology}, volume = {41}, journal = {Fungal ecology}, publisher = {Elsevier}, address = {Oxford}, issn = {1754-5048}, doi = {10.1016/j.funeco.2019.04.004}, pages = {116 -- 125}, year = {2019}, abstract = {Fungi are an important component of microbial communities and are well known for their ability to decompose refractory, highly polymeric organic matter. In soils and aquatic systems, fungi play an important role in carbon processing, however, their diversity, community structure and function as well as ecological role, particularly in groundwater, are poorly studied. The aim of this study was to examine the fungal community composition, diversity and function in groundwater from 16 boreholes located in the vicinity of two lakes in NE Germany that are characterized by contrasting trophic status. The analysis of 28S rRNA gene sequences amplified from the groundwater revealed high fungal diversity arid clear differences in community structure between the aquifers. Most sequences were assigned to Ascomycota and Basidiomycota, but members of Chytridiomycota, Cryptomycota, Zygomycota, Blastocladiomycota, Glomeromycota and Neocallimastigomycota were also detected. In addition, 27 species of fungi were successfully isolated from the groundwater samples and tested for their ability to decompose complex organic polymers - the predominant carbon source in the groundwater. Most isolates showed positive activities for at least one of the tested polymer types, with three strains, belonging to the genera Gibberella, Isaria and Cadophora, able to decompose all tested substrates. Our results highlight the high diversity of fungi in groundwater, and point to their important ecological role in breaking down highly polymeric organic matter in these isolated microbial habitats. (C) 2019 Elsevier Ltd and British Mycological Society. All rights reserved.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} } @article{GuenthelDonisKirillinetal.2019, author = {G{\"u}nthel, Marco and Donis, Daphne and Kirillin, Georgiy and Ionescu, Danny and Bizic, Mina and McGinnis, Daniel F. and Grossart, Hans-Peter and Tang, Kam W.}, title = {Contribution of oxic methane production to surface methane emission in lakes and its global importance}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-13320-0}, pages = {10}, year = {2019}, abstract = {Recent discovery of oxic methane production in sea and lake waters, as well as wetlands, demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50\%) of surface methane emission for lakes with surface areas >1 km(2).}, language = {en} } @article{MasigolKhodaparastWoodhouseetal.2019, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Woodhouse, Jason Nicholas and Rojas Jim{\´e}nez, Keilor and Fonvielle, Jeremy Andre and Rezakhani, Forough and Mostowfizadeh-Ghalamfarsa, Reza and Neubauer, Darshan and Goldhammer, Tobias and Grossart, Hans-Peter}, title = {The contrasting roles of aquatic fungi and oomycetes in the degradation and transformation of polymeric organic matter}, series = {Limnology and oceanography}, volume = {64}, journal = {Limnology and oceanography}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, pages = {2662 -- 2678}, year = {2019}, abstract = {Studies on the ecological role of fungi and, to a lesser extent, oomycetes, are receiving increasing attention, mainly due to their participation in the cycling of organic matter in aquatic ecosystems. To unravel their importance in humification processes, we isolated several strains of fungi and oomycetes from Anzali lagoon, Iran. We then performed taxonomic characterization by morphological and molecular methods, analyzed the ability to degrade several polymeric substrates, performed metabolic fingerprinting with Ecoplates, and determined the degradation of humic substances (HS) using liquid chromatography-organic carbon detection. Our analyses highlighted the capacity of aquatic fungi to better degrade a plethora of organic molecules, including complex polymers. Specifically, we were able to demonstrate not only the utilization of these complex polymers, but also the role of fungi in the production of HS. In contrast, oomycetes, despite some morphological and physiological similarities with aquatic fungi, exhibited a propensity toward opportunism, quickly benefitting from the availability of small organic molecules, while exhibiting sensitivity toward more complex polymers. Despite their contrasting roles, our study highlights the importance of both oomycetes and fungi in aquatic organic matter transformation and cycling with potential implications for the global carbon cycle.}, language = {en} } @article{NumbergerGanzertZoccaratoetal.2019, author = {Numberger, Daniela and Ganzert, Lars and Zoccarato, Luca and M{\"u}hldorfer, Kristin and Sauer, Sascha and Grossart, Hans-Peter and Greenwood, Alex D.}, title = {Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-46015-z}, pages = {14}, year = {2019}, abstract = {Wastewater treatment is crucial to environmental hygiene in urban environments. However, wastewater treatment plants (WWTPs) collect chemicals, organic matter, and microorganisms including pathogens and multi-resistant bacteria from various sources which may be potentially released into the environment via WWTP effluent. To better understand microbial dynamics in WWTPs, we characterized and compared the bacterial community of the inflow and effluent of a WWTP in Berlin, Germany using full-length 16S rRNA gene sequences, which allowed for species level determination in many cases and generally resolved bacterial taxa. Significantly distinct bacterial communities were identified in the wastewater inflow and effluent samples. Dominant operational taxonomic units (OTUs) varied both temporally and spatially. Disease associated bacterial groups were efficiently reduced in their relative abundance from the effluent by the WWTP treatment process, except for Legionella and Leptospira species which demonstrated an increase in relative proportion from inflow to effluent. This indicates that WWTPs, while effective against enteric bacteria, may enrich and release other potentially pathogenic bacteria into the environment. The taxonomic resolution of full-length 16S rRNA genes allows for improved characterization of potential pathogenic taxa and other harmful bacteria which is required to reliably assess health risk.}, language = {en} } @article{KettnerOberbeckmannLabrenzetal.2019, author = {Kettner, Marie Therese and Oberbeckmann, Sonja and Labrenz, Matthias and Grossart, Hans-Peter}, title = {The Eukaryotic Life on Microplastics in Brackish Ecosystems}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.00538}, pages = {13}, year = {2019}, abstract = {Microplastics (MP) constitute a widespread contaminant all over the globe. Rivers and wastewater treatment plants (WWTP) transport annually several million tons of MP into freshwaters, estuaries and oceans, where they provide increasing artificial surfaces for microbial colonization. As knowledge on MP-attached communities is insufficient for brackish ecosystems, we conducted exposure experiments in the coastal Baltic Sea, an in-flowing river and a WWTP within the drainage basin. While reporting on prokaryotic and fungal communities from the same set-up previously, we focus here on the entire eukaryotic communities. Using high-throughput 18S rRNA gene sequencing, we analyzed the eukaryotes colonizing on two types of MP, polyethylene and polystyrene, and compared them to the ones in the surrounding water and on a natural surface (wood). More than 500 different taxa across almost all kingdoms of the eukaryotic tree of life were identified on MP, dominated by Alveolata, Metazoa, and Chloroplastida. The eukaryotic community composition on MP was significantly distinct from wood and the surrounding water, with overall lower diversity and the potentially harmful dinoflagellate Pfiesteria being enriched on MP. Co-occurrence networks, which include prokaryotic and eukaryotic taxa, hint at possibilities for dynamic microbial interactions on MP. This first report on total eukaryotic communities on MP in brackish environments highlights the complexity of MP-associated biofilms, potentially leading to altered microbial activities and hence changes in ecosystem functions.}, language = {en} }