@article{LechleitnerBreitenbachChengetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Cheng, Hai and Plessen, Birgit and Rehfeld, Kira and Goswami, Bedartha and Marwan, Norbert and Eroglu, Deniz and Adkins, Jess F. and Haug, Gerald}, title = {Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation}, series = {Quaternary research : an interdisciplinary journal}, volume = {88}, journal = {Quaternary research : an interdisciplinary journal}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2017.72}, pages = {458 -- 471}, year = {2017}, abstract = {Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.}, language = {en} } @article{LiLiuWangetal.2017, author = {Li, Kai and Liu, Xingqi and Wang, Yongbo and Herzschuh, Ulrike and Ni, Jian and Liao, Mengna and Xiao, Xiayun}, title = {Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {177}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.020}, pages = {235 -- 245}, year = {2017}, abstract = {The Indian Summer Monsoon (ISM) is one of the most important climate systems, whose variability and driving mechanisms are of broad interest for academic and societal communities. Here, we present a well-dated high-resolution pollen analysis from a 4.82-m long sediment core taken from Basomtso, in the southeastern Tibetan Plateau (TP), which depicts the regional climate changes of the past millennium. Our results show that subalpine coniferous forest was dominant around Basomtso from ca. 867 to ca. 750 cal. yr BP, indicating a warm and semi-humid climate. The timberline in the study area significantly decreased from ca. 750 to ca.100 cal. yr BP, and a cold climate, corresponding to the Little Ice Age (LIA) prevailed. Since ca. 100 cal. yr BP, the vegetation type changed to forest-meadow with rising temperatures and moisture. Ordination analysis reveals that the migration of vegetation was dominated by regional temperatures and then by moisture. Further comparisons between the Basomtso pollen record and the regional temperature reconstructions underscore the relevance of the Basomtso record from the southeastern TP for regional and global climatologies. Our pollen based moisture reconstruction demonstrates the strong multicentennial-scale link to ISM variability, providing solid evidence for the increase of monsoonal strengths over the past four centuries. Spectral analysis indicates the potential influence of solar forcing. However, a closer relationship has been observed between multicentennial ISM variations and Indian Ocean sea surface temperature anomalies (SSTs), suggesting that the variations in monsoonal precipitation over the southeastern TP are probably driven by the Indian Ocean Dipole on the multicentennial scale. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }