@article{JantzJann2013, author = {Jantz, Bastian and Jann, Werner}, title = {Mapping accountability changes in labour market administrations from concentrated to shared accountability?}, series = {International review of administrative sciences : an international journal of comparative public administration}, volume = {79}, journal = {International review of administrative sciences : an international journal of comparative public administration}, number = {2}, publisher = {Sage Publ.}, address = {London}, issn = {0020-8523}, doi = {10.1177/0020852313477764}, pages = {227 -- 248}, year = {2013}, abstract = {The article explores how recent changes in the governance of employment services in three European countries (Denmark, Germany and Norway) have influenced accountability relationships. The overall assumption in the growing literature about accountability is that the number of actors involved in accountability arrangements is rising, that accountability relationships are becoming more numerous and complex, and that these changes may lead to contradictory accountability relationships, and finally to multi accountability disorder'. The article tries to explore these assumptions by analysing the different actors involved and the information requested in the new governance arrangements in all three countries. It concludes that the considerable changes in organizational arrangements and more managerial information demanded and provided have led to more shared forms of accountability. Nevertheless, a clear development towards less political or administrative accountability could not be observed.}, language = {en} } @article{AttermeyerPremkeHornicketal.2013, author = {Attermeyer, Katrin and Premke, Katrin and Hornick, Thomas and Hilt, Sabine and Grossart, Hans-Peter}, title = {Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats}, series = {Ecology : a publication of the Ecological Society of America}, volume = {94}, journal = {Ecology : a publication of the Ecological Society of America}, number = {12}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/13-0420.1}, pages = {2754 -- 2766}, year = {2013}, abstract = {In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using C-13-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POML and via benthic macroinvertebrates by shredding of t-POML. The latter pathway represents a benthic shortcut which efficiently transfers t-POML to higher trophic levels.}, language = {en} }