@article{ChengDennisOsuohaetal.2023, author = {Cheng, Feng and Dennis, Alice B. and Osuoha, Josephine Ijeoma and Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha}, series = {BMC genomics}, volume = {24}, journal = {BMC genomics}, number = {1}, publisher = {BMC}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-023-09196-6}, pages = {13}, year = {2023}, abstract = {Background Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. Results A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69\%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. Conclusions We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.}, language = {en} } @article{GasparatosSchefflerHermanussen2023, author = {Gasparatos, Nikolaos and Scheffler, Christiane and Hermanussen, Michael}, title = {Assessing the applicability of changepoint analysis to analyse short-term growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.62}, pages = {15}, year = {2023}, abstract = {Background: Assessing short-term growth in humans is still fraught with difficulties. Especially when looking for small variations and increments, such as mini growth spurts, high precision instruments or frequent measurements are necessary. Daily measurements however require a lot of effort, both for anthropologists and for the subjects. Therefore, new sophisticated approaches are needed that reduce fluctuations and reveal underlying patterns. Objectives: Changepoints are abrupt variations in the properties of time series data. In the context of growth, such variations could be variation in mean height. By adjusting the variance and using different growth models, we assessed the ability of changepoint analysis to analyse short-term growth and detect mini growth spurts. Sample and Methods: We performed Bayesian changepoint analysis on simulated growth data using the bcp package in R. Simulated growth patterns included stasis, linear growth, catch-up growth, and mini growth spurts. Specificity and a normalised variant of the Matthews correlation coefficient (MCC) were used to assess the algorithm's performance. Welch's t-test was used to compare differences of the mean. Results: First results show that changepoint analysis can detect mini growth spurts. However, the ability to detect mini growth spurts is highly dependent on measurement error. Data preparation, such as ranking and rotating time series data, showed negligible improvements. Missing data was an issue and may affect the prediction quality of the classification metrics. Conclusion: Changepoint analysis is a promising tool to analyse short-term growth. However, further optimisation and analysis of real growth data is needed to make broader generalisations.}, language = {en} } @article{PetrichAjiDunsingetal.2023, author = {Petrich, Annett and Aji, Amit Koikkarah and Dunsing, Valentin and Chiantia, Salvatore}, title = {Benchmarking of novel green fluorescent proteins for the quantification of protein oligomerization in living cells}, series = {PLoS one}, volume = {18}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0285486}, pages = {13}, year = {2023}, abstract = {Protein-protein-interactions play an important role in many cellular functions. Quantitative non-invasive techniques are applied in living cells to evaluate such interactions, thereby providing a broader understanding of complex biological processes. Fluorescence fluctuation spectroscopy describes a group of quantitative microscopy approaches for the characterization of molecular interactions at single cell resolution. Through the obtained molecular brightness, it is possible to determine the oligomeric state of proteins. This is usually achieved by fusing fluorescent proteins (FPs) to the protein of interest. Recently, the number of novel green FPs has increased, with consequent improvements to the quality of fluctuation-based measurements. The photophysical behavior of FPs is influenced by multiple factors (including photobleaching, protonation-induced "blinking" and long-lived dark states). Assessing these factors is critical for selecting the appropriate fluorescent tag for live cell imaging applications. In this work, we focus on novel green FPs that are extensively used in live cell imaging. A systematic performance comparison of several green FPs in living cells under different pH conditions using Number \& Brightness (N \& B) analysis and scanning fluorescence correlation spectroscopy was performed. Our results show that the new FP Gamillus exhibits higher brightness at the cost of lower photostability and fluorescence probability (pf), especially at lower pH. mGreenLantern, on the other hand, thanks to a very high pf, is best suited for multimerization quantification at neutral pH. At lower pH, mEGFP remains apparently the best choice for multimerization investigation. These guidelines provide the information needed to plan quantitative fluorescence microscopy involving these FPs, both for general imaging or for protein-protein-interactions quantification via fluorescence fluctuation-based methods.}, language = {en} } @article{CompartSinghFettkeetal.2023, author = {Compart, Julia and Singh, Aakanksha and Fettke, J{\"o}rg and Apriyanto, Ardha}, title = {Customizing starch properties}, series = {Polymers}, volume = {15}, journal = {Polymers}, number = {16}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym15163491}, pages = {20}, year = {2023}, abstract = {Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.}, language = {en} } @article{GlowinskiAutenrieth2023, author = {Glowinski, Ingrid and Autenrieth, Marijke}, title = {Eigene Forschung im Labor, um naturwissenschaftliche Erkenntnisgewinnung kompetent unterrichten zu k{\"o}nnen?}, series = {PSI-Potsdam: Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2019-2023) (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 3)}, journal = {PSI-Potsdam: Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2019-2023) (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 3)}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-568-2}, issn = {2626-3556}, doi = {10.25932/publishup-61792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617922}, pages = {273 -- 293}, year = {2023}, abstract = {Im Rahmen des PSI-Projekts wurde eine Lehrveranstaltung konzipiert, die Lehramtsstudierenden einen vertieften Einblick sowohl in den Ablauf von Forschung als auch eine Bearbeitung einer eigenen experimentellen Forschungsaufgabe erm{\"o}glichen soll. Anlass waren die Ber{\"u}cksichtigung eines „Wissens {\"u}ber Erkenntnisgewinnung in der Disziplin" im Modell des „Erweiterten Fachwissens f{\"u}r den schulischen Kontext" (PSI) sowie Erkenntnisse empirischer Studien, die die Relevanz eigener Forschungserfahrung f{\"u}r das Unterrichten naturwissenschaftlicher Erkenntnisgewinnungsprozesse zeigen. Hier stellen wir eine neue Lehrveranstaltung (4 SWS) vor, die den angehenden Lehrkr{\"a}ften Forschungserfahrung erm{\"o}glicht (Seminar und Praktikum). Die Lehrveranstaltung vermittelt Einblicke in Forschung und die „Natur der Naturwissenschaften", erm{\"o}glicht das Durchf{\"u}hren eigener wissenschaftlicher und schulrelevanter Experimente und bietet eine angemessene Reflexion {\"u}ber die verschiedenen Kurselemente. Die Evaluationsergebnisse sind {\"u}berwiegend positiv, zeigen aber auch, dass f{\"u}r die Studierenden die wahrgenommene Schulrelevanz und die fachdidaktischen Aspekte ein wichtiges Kriterium f{\"u}r die positive Bewertung sind.}, language = {de} } @article{Pandey2023, author = {Pandey, Yogesh}, title = {Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.}, series = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, volume = {1865}, journal = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2642}, doi = {10.1016/j.bbamem.2023.184144}, year = {2023}, abstract = {Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.}, language = {en} } @article{HermanussenSchefflerPulunganetal.2023, author = {Hermanussen, Michael and Scheffler, Christiane and Pulungan, Aman B. and Bandyopadhyay, Arup Ratan and Ghosh, Jyoti Ratan and {\"O}zdemir, Ay{\c{s}}eg{\"u}l and Koca {\"O}zer, Ba{\c{s}}ak and Musalek, Martin and Lebedeva, Lidia and Godina, Elena and Bogin, Barry and Tutkuviene, Janina and Budrytė, Milda and Gervickaite, Simona and Limony, Yehuda and Kirchengast, Sylvia and Buston, Peter and Groth, Detlef and R{\"o}sler, Antonia and Gasparatos, Nikolaos and Erofeev, Sergei and Novine, Masiar and Navazo, B{\´a}rbara and Dahinten, Silvia and Gomuła, Aleksandra and Nowak-Szczepańska, Natalia and Kozieł, Sławomir}, title = {Environment, social behavior, and growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.59}, pages = {14}, year = {2023}, abstract = {Twenty-four scientists met for the annual Auxological conference held at Krobielowice castle, Poland, to discuss the diverse influences of the environment and of social behavior on growth following last year's focus on growth and public health concerns (Hermanussen et al., 2022b). Growth and final body size exhibit marked plastic responses to ecological conditions. Among the shortest are the pygmoid people of Rampasasa, Flores, Indonesia, who still live under most secluded insular conditions. Genetics and nutrition are usually considered responsible for the poor growth in many parts of this world, but evidence is accumulating on the prominent impact of social embedding on child growth. Secular trends not only in the growth of height, but also in body proportions, accompany the secular changes in the social, economic and political conditions, with major influences on the emotional and educational circumstances under which the children grow up (Bogin, 2021). Aspects of developmental tempo and aspects of sports were discussed, and the impact of migration by the example of women from Bangladesh who grew up in the UK. Child growth was considered in particular from the point of view of strategic adjustments of individual size within the network of its social group. Theoretical considerations on network characteristics were presented and related to the evolutionary conservation of growth regulating hypothalamic neuropeptides that have been shown to link behavior and physical growth in the vertebrate species. New statistical approaches were presented for the evaluation of short term growth measurements that permit monitoring child growth at intervals of a few days and weeks.}, language = {en} } @article{KappelFriedrichOberkofleretal.2023, author = {Kappel, Christian and Friedrich, Thomas and Oberkofler, Vicky and Jiang, Li and Crawford, Tim and Lenhard, Michael and B{\"a}urle, Isabel}, title = {Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis}, series = {Genome biology : biology for the post-genomic era}, volume = {24}, journal = {Genome biology : biology for the post-genomic era}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1474-760X}, doi = {10.1186/s13059-023-02970-5}, pages = {23}, year = {2023}, abstract = {Background Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. Results HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. Conclusions Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.}, language = {en} } @article{GrothSchefflerHermanussen2023, author = {Groth, Detlef and Scheffler, Christiane and Hermanussen, Michael}, title = {Human growth data analysis and statistics - the 5th G{\"u}lpe International Student Summer School}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.70}, pages = {5}, year = {2023}, abstract = {The Summer School in G{\"u}lpe (Ecological Station of the University of Potsdam) offers an exceptional learning opportunity for students to apply their knowledge and skills to real-world problems. With the guidance of experienced human biologists, statisticians, and programmers, students have the unique chance to analyze their own data and gain valuable insights. This interdisciplinary setting not only bridges different research areas but also leads to highly valuable outputs. The progress of students within just a few days is truly remarkable, especially when they are motivated and receive immediate feedback on their questions, problems, and results. The Summer School covers a wide range of topics, with this year's focus mainly on two areas: understanding the impact of socioeconomic and physiological factors on human development and mastering statistical techniques for analyzing data such as changepoint analysis and the St. Nicolas House Analysis (SNHA) to visualize interacting variables. The latter technique, born out of the Summer School's emphasis on gaining comprehensive data insights and understanding major relationships, has proven to be a valuable tool for researchers in the field. The articles in this special issue demonstrate that the Summer School in G{\"u}lpe stands as a testament to the power of practical learning and collaboration. Students who attend not only gain hands-on experience but also benefit from the expertise of professionals and the opportunity to engage with peers from diverse disciplines.}, language = {en} } @article{CordobaTongBurgosetal.2023, author = {C{\´o}rdoba, Sandra Correa and Tong, Hao and Burgos, Asdrubal and Zhu, Feng and Alseekh, Saleh and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-023-40644-9}, pages = {12}, year = {2023}, abstract = {The use of automated tools to reconstruct lipid metabolic pathways is not warranted in plants. Here, the authors construct Plant Lipid Module for Arabidopsis rosette using constraint-based modeling, demonstrate its integration in other plant metabolic models, and use it to dissect the genetic architecture of lipid metabolism. Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83\%) of single lethal knock-outs and 75\% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40\% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.}, language = {en} }