@article{BadalyanYogaSchwuchowetal.2013, author = {Badalyan, Artavazd and Yoga, Etienne Galemou and Schwuchow, Viola and P{\"o}ller, Sascha and Schuhmann, Wolfgang and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {Analysis of the interaction of the molybdenum hydroxylase PaoABC from Escherichia coli with positively and negatively charged metal complexes}, series = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, volume = {37}, journal = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, publisher = {Elsevier}, address = {New York}, issn = {1388-2481}, doi = {10.1016/j.elecom.2013.09.017}, pages = {5 -- 7}, year = {2013}, abstract = {An unusual behavior of the periplasmic aldehyde oxidoreductase (PaoABC) from Escherichia coil has been observed from electrochemical investigations of the enzyme catalyzed oxidation of aromatic aldehydes with different mediators under different conditions of ionic strength. The enzyme has similarity to other molybdoenzymes of the xanthine oxidase family, but the catalytic behavior turned out to be very different. Under steady state conditions the turnover of PaoABC is maximal at pH 4 for the negatively charged ferricyanide and at pH 9 for a positively charged osmium complex. Stopped-flow kinetic measurements of the catalytic half reaction showed that oxidation of benzaldehyde proceeds also above pH 7. Thus, benzaldehyde oxidation can proceed under acidic and basic conditions using this enzyme, a property which has not been described before for molybdenum hydroxylases. It is also suggested that the electron transfer with artificial electron acceptors and PaoABC can proceed at different protein sites and depends on the nature of the electron acceptor in addition to the ionic strength. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{OtreloCardosoSchwuchowRodriguesetal.2014, author = {Otrelo-Cardoso, Ana Rita and Schwuchow, Viola and Rodrigues, David and Cabrita, Eurico J. and Leimk{\"u}hler, Silke and Romao, Maria Joao and Santos-Silva, Teresa}, title = {Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0087295}, pages = {9}, year = {2014}, abstract = {Molybdenum and tungsten enzymes require specific chaperones for folding and cofactor insertion. PaoD is the chaperone of the periplasmic aldehyde oxidoreductase PaoABC. It is the last gene in the paoABCD operon in Escherichia coli and its presence is crucial for obtaining mature enzyme. PaoD is an unstable, 35 kDa, protein. Our biochemical studies showed that it is a dimer in solution with a tendency to form large aggregates, especially after freezing/thawing cycles. In order to improve stability, PaoD was thawed in the presence of two ionic liquids [C(4)mim]Cl and [C(2)OHmim]PF6 and no protein precipitation was observed. This allowed protein concentration and crystallization using polyethylene glycol or ammonium sulfate as precipitating agents. Saturation transfer difference - nuclear magnetic resonance (STD-NMR) experiments have also been performed in order to investigate the effect of the ionic liquids in the stabilization process, showing a clear interaction between the acidic ring protons of the cation and, most likely, negatively charged residues at the protein surface. DLS assays also show a reduction of the overall size of the protein aggregates in presence of ionic liquids. Furthermore, cofactor binding studies on PaoD showed that the protein is able to discriminate between molybdenum and tungsten bound to the molybdenum cofactor, since only a Mo-MPT form of the cofactor remained bound to PaoD.}, language = {en} } @article{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/bios4040403}, pages = {403 -- 421}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @article{OtreloCardosodaSilvaCorreiaSchwuchowetal.2014, author = {Otrelo-Cardoso, Ana Rita and da Silva Correia, Marcia Alexandra and Schwuchow, Viola and Svergun, Dmitri I. and Romao, Maria Joao and Leimk{\"u}hler, Silke and Santos-Silva, Teresa}, title = {Structural Data on the Periplasmic Aldehyde Oxidoreductase PaoABC from Escherichia coli: SAXS and Preliminary X-ray Crystallography Analysis}, series = {International journal of molecular sciences}, volume = {15}, journal = {International journal of molecular sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms15022223}, pages = {2223 -- 2236}, year = {2014}, abstract = {The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20\% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 angstrom and belong to the C2 space group, with cell parameters a = 109.42 angstrom, b = 78.08 angstrom, c = 151.77 angstrom, = 99.77 degrees, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an heterotrimer.}, language = {en} } @article{CorreiaOtreloCardosoSchwuchowetal.2016, author = {Correia, Marcia A. S. and Otrelo-Cardoso, Ana Rita and Schwuchow, Viola and Clauss, Kajsa G. V. Sigfridsson and Haumann, Michael and Romao, Maria Joao and Leimk{\"u}hler, Silke and Santos-Silva, Teresa}, title = {The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes}, series = {ACS chemical biology}, volume = {11}, journal = {ACS chemical biology}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.6b00572}, pages = {2923 -- 2935}, year = {2016}, abstract = {The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E. coli protein containing a molybdopterin-cytosine-dinucleotide cofactor and is the only heterotrimer of the XO family so far structurally characterized. The crystal structure revealed the presence of an unexpected [4Fe-4S] cluster, anchored to an additional 40 residues subdomain. According to phylogenetic analysis, proteins containing this cluster are widely spread in many bacteria phyla, putatively through repeated gene transfer events. The active site of PaoABC is highly exposed to the surface with no aromatic residues and an arginine (PaoC-R440) making a direct interaction with PaoC-E692, which acts as a base catalyst. In order to understand the importance of R440, kinetic assays were carried out, and the crystal structure of the PaoC-R440H variant was also determined.}, language = {en} }