@article{SedaghatmehrThirumalaikumarKamranfaretal.2021, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Schulz, Karina and M{\"u}ller-R{\"o}ber, Bernd and Sampathkumar, Arun and Balazadeh, Salma}, title = {Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery}, series = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, volume = {72}, journal = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, number = {21}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab304}, pages = {7498 -- 7513}, year = {2021}, abstract = {Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory.}, language = {en} } @article{KappelFriedrichOberkofleretal.2023, author = {Kappel, Christian and Friedrich, Thomas and Oberkofler, Vicky and Jiang, Li and Crawford, Tim and Lenhard, Michael and B{\"a}urle, Isabel}, title = {Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis}, series = {Genome biology : biology for the post-genomic era}, volume = {24}, journal = {Genome biology : biology for the post-genomic era}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1474-760X}, doi = {10.1186/s13059-023-02970-5}, pages = {23}, year = {2023}, abstract = {Background Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. Results HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. Conclusions Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.}, language = {en} } @article{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Autophagy}, volume = {17}, journal = {Autophagy}, number = {9}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1554-8635}, doi = {10.1080/15548627.2020.1820778}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} } @article{RalevskiApeltOlasetal.2022, author = {Ralevski, Alexandra and Apelt, Federico and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Rugarli, Elena I. and Kragler, Friedrich and Horvath, Tamas L.}, title = {Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice}, series = {Cellular and molecular life sciences}, volume = {79}, journal = {Cellular and molecular life sciences}, number = {6}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-022-04382-3}, pages = {17}, year = {2022}, abstract = {Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.}, language = {en} } @article{MalinovaKoesslerOrawetzetal.2019, author = {Malinova, Irina and K{\"o}ssler, Stella and Orawetz, Tom and Matthes, Ulrike and Orzechowski, Slawomir and Koch, Anke and Fettke, J{\"o}rg}, title = {Identification of two Arabidopsis thaliana plasma membrane transporters able to transport glucose 1-phosphate}, series = {Plant \& cell physiology}, volume = {61}, journal = {Plant \& cell physiology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1093/pcp/pcz206}, pages = {381 -- 392}, year = {2019}, abstract = {Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.}, language = {en} } @article{WangLiMaetal.2021, author = {Wang, Meng and Li, Panpan and Ma, Yao and Nie, Xiang and Grebe, Markus and Men, Shuzhen}, title = {Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22010437}, pages = {20}, year = {2021}, abstract = {Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.}, language = {en} } @article{MeridaFettke2021, author = {Merida, Angel and Fettke, J{\"o}rg}, title = {Starch granule initiation in Arabidopsis thaliana chloroplasts}, series = {The plant journal}, volume = {107}, journal = {The plant journal}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.15359}, pages = {688 -- 697}, year = {2021}, abstract = {The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.}, language = {en} } @article{KuekenGennermannNikoloski2020, author = {K{\"u}ken, Anika and Gennermann, Kristin and Nikoloski, Zoran}, title = {Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana}, series = {The plant journal}, volume = {103}, journal = {The plant journal}, number = {6}, publisher = {Wiley}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.14890}, pages = {2168 -- 2177}, year = {2020}, abstract = {Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.}, language = {en} } @article{MuntahaLiCompartetal.2022, author = {Muntaha, Sidratul Nur and Li, Xiaoping and Compart, Julia and Apriyanto, Ardha and Fettke, J{\"o}rg}, title = {Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {180}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2022.03.033}, pages = {35 -- 41}, year = {2022}, abstract = {The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.}, language = {en} } @article{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, edition = {19}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules26195859}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} }