@article{KootenDelPapaStarcketal.2022, author = {Kooten, Willemijn Sarah Maria Theresia van and Del Papa, Cecilia E. and Starck, Daniel and Sobel, Edward and Cavalleri, Pablo and Agueera, Maximiliano and Schijndel, Valby van and Glodny, Johannes}, title = {Evidence of Jurassic extension in NW Argentina: characterization of fault-related strata at the Salta Group base using sandstone provenance and zircon U-Pb geochronology}, series = {Journal of South American earth sciences}, volume = {120}, journal = {Journal of South American earth sciences}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.104048}, pages = {17}, year = {2022}, abstract = {The present-day structure of the Eastern Cordillera in NW Argentina is governed by structural and lithological heterogeneities inherited from preceding deformation phases, which influence the localization of newly-formed faults and the inversion of pre-existing structures. The Salta Rift Basin formed during a Late Jurassic-Cretaceous extensional phase and created a dominant structural and stratigraphic imprint in NW Argentina that is partic-ularly evident within the Eastern Cordillera, where uplift and exhumation have exposed the Salta Group syn-rift succession. Although in general, the Salta Group rests upon Paleozoic rocks, locally the Tacuru Group forms an intermediate succession, consisting of interfingering eolian sandstones and proximal fault-related conglomerates with a Jurassic maximum depositional age. This succession might be the key to unraveling the Mesozoic history of NW Argentina, prior to the deposition of the Salta Group. The conglomerates represent the earliest deposits related to extension in the western Lomas de Olmedo sub-basin, which is also documented in predominantly Jurassic zircon (U-Th-Sm)/He cooling ages of the rift shoulders. The detrital zircon U-Pb age signature and sandstone provenance of the Tacuru Group conglomerates differs strongly from the Salta Group syn-rift strata, which show a more regional signal. These variations and the angularity of the unconformity may be connected to a rotation of the extension direction in the western Lomas de Olmedo sub-basin.}, language = {en} } @article{RezaeiTimmermanMoazzenetal.2023, author = {Rezaei, Leila and Timmerman, Martin Jan and Moazzen, Mohssen and Altenberger, Uwe and Sl{\´a}ma, Jiř{\´i} and Sudo, Masafumi and G{\"u}nter, Christina and Wilke, Franziska Daniela Helena and Schleicher, Anja M.}, title = {Mid-cretaceous extensional magmatism in the Alborz Mountains, north Iran}, series = {Swiss journal of geosciences}, volume = {116}, journal = {Swiss journal of geosciences}, publisher = {Birkh{\"a}user}, address = {Basel}, issn = {1661-8734}, doi = {10.1186/s00015-023-00443-2}, pages = {21}, year = {2023}, abstract = {In the Gasht-Masuleh area in the Alborz Mountains, gabbroic magma intruded Palaeozoic metasediments and Mesozoic sediments and crystallised as isotropic and cumulate gabbros. LREE enrichment points to relatively low degrees of mantle melting and depletion of Ti, Nb and Ta relative to primitive mantle points to an arc related component in the magma. Clinopyroxene compositions indicate MORB to arc signatures. U-Pb zircon crystallisation ages of 99.5 ± 0.6 Ma and 99.4 ± 0.6 Ma and phlogopite 40Ar/39Ar ages of 97.1 ± 0.4 Ma, 97.5 ± 0.4 Ma, 97.1 ± 0.1 Ma, within 2σ error, indicate that gabbro intrusion occurred in the (Albian-)Cenomanian (mid-Cretaceous). As active subduction did not take place in the Cretaceous in North Iran, the small volume mafic magmatism in the Gasht-Masuleh area must be due to local, extension-related mantle melting. Melting was most likely caused by far field effects triggered by roll-back of the Neo-Tethys subducting slab. As subduction took place at a distance of ~ 400 km (present distance) from the Alborz Mountains, the observed arc geochemical signatures must be inherited from a previous subduction event and concomitant mantle metasomatism, possibly in combination with contamination of the magma by crustal material.}, language = {en} } @article{ScharfSudoPracejusetal.2020, author = {Scharf, Andreas and Sudo, Masafumi and Pracejus, Bernhard and Mattern, Frank and Callegari, Ivan and Bauer, Wilfried and Scharf, Katharina}, title = {Late Lutetian (Eocene) mafic intrusion into shallow marine platform deposits north of the Oman Mountains (Rusayl Embayment) and its tectonic significance}, series = {Journal of African earth sciences}, volume = {170}, journal = {Journal of African earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2020.103941}, pages = {15}, year = {2020}, abstract = {A silica undersaturated alkali-olivine basanitic magma intruded the late Paleocene/early Eocene Jafnayn Formation near Muscat. Geochemical analyses indicate that a significant amount of host rock (limestone) was assimilated into the magma. We dated the basanite as 42.7 +/- 1.0 Ma (2 sigma error; late Lutetian), using the whole rock Ar-40/Ar-39 step-wise heating technique. Intrusion occurred in the hanging wall of a major regional extensional shear zone (Frontal Range Fault, FRF) bounding the northern margin of two domes within the Oman Mountains (Jabal Akhdar and Saih Hatat domes). Two shear intervals along the FRF have been documented. The first interval lasted immediately after emplacement of the Semail Ophiolite (latest Cretaceous-early Eocene) while the second and poorly constrained interval was assumed to have occurred during the Oligocene. The proximity of the basanite to the FRF suggests that magma used extensional faults for the upper part of its ascent path. Reactivated Permian rift faults of the Pangaea rift or other preexisting faults may have been used for the lower ascent part. We conclude that the basanite intrusion coincided with the onset of the second deformation interval along the FRF, because (1) the position of the basanite is near a dextral releasing bend, associated with the second shear interval, (2) the overlap of our Ar-40/Ar-39 age with the cooling curves for rocks from the nearby Jabal Akhdar Dome, and (3) the basanite postdates the first FRF deformation episode by > 10 Ma. Thus, the second interval along the FRF had started already during the late Lutetian and probably lasted into the Miocene.}, language = {en} } @article{NaliboffGlerumBruneetal.2020, author = {Naliboff, John B. and Glerum, Anne and Brune, Sascha and P{\´e}ron-Pinvidic, G. and Wrona, Thilo}, title = {Development of 3-D rift heterogeneity through fault network evolution}, series = {Geophysical Research Letters}, volume = {47}, journal = {Geophysical Research Letters}, number = {13}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {11}, year = {2020}, abstract = {Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as preexisting anisotropies in rock composition, rheology, and deformation. Here, we use high-resolution 3-D thermal-mechanical numerical models of continental extension to demonstrate that rift-parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere-scale faults, which are laterally offset by tens of km and discontinuous along-strike. These results demonstrate that rift- and margin-parallel heterogeneity of large-scale fault patterns may in-part be a natural byproduct of fault network coalescence.}, language = {en} } @article{ThiedeSobelChenetal.2013, author = {Thiede, Rasmus Christoph and Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20050}, pages = {763 -- 779}, year = {2013}, abstract = {The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin.}, language = {en} }