@article{SimonovaIvanovMeleshkoetal.2020, author = {Simonova, Maria and Ivanov, Ivan and Meleshko, Tamara and Kopyshev, Alexey and Santer, Svetlana and Yakimansky, Alexander and Filippov, Alexander}, title = {Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents}, series = {Polymers}, volume = {12}, journal = {Polymers}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym12122922}, pages = {15}, year = {2020}, abstract = {Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains.}, language = {en} } @article{DragoPawlakWeithoff2020, author = {Drago, Claudia and Pawlak, Julia and Weithoff, Guntram}, title = {Biogenic aggregation of small microplastics alters their ingestion by a common freshwater micro-invertebrate}, series = {Frontiers in Environmental Science}, volume = {8}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2020.574274}, pages = {11}, year = {2020}, abstract = {In recent years, increasing concerns have been raised about the environmental risk of microplastics in freshwater ecosystems. Small microplastics enter the water either directly or accumulate through disintegration of larger plastic particles. These particles might then be ingested by filter-feeding zooplankton, such as rotifers. Particles released into the water may also interact with the biota through the formation of aggregates, which might alter the uptake by zooplankton. In this study, we tested for size-specific aggregation of polystyrene microspheres and their ingestion by a common freshwater rotifer Brachionus calyciflorus. The ingestion of three sizes of polystyrene microspheres (MS) 1-, 3-, and 6-mu m was investigated. Each MS size was tested in combination with three different treatments: MS as the sole food intake, MS in association with food algae and MS aggregated with biogenic matter. After 72 h incubation in pre-filtered natural river water, the majority of the 1-mu m spheres occurred as aggregates. The larger the particles, the higher the relative number of single particles and the larger the aggregates. All particles were ingested by the rotifer following a Type-II functional response. The presence of algae did not influence the ingestion of the MS for all three sizes. The biogenic aggregation of microspheres led to a significant size-dependent alteration in their ingestion. Rotifers ingested more microspheres (MS) when exposed to aggregated 1- and 3-mu m MS as compared to single spheres, whereas fewer aggregated 6-mu m spheres were ingested. This indicates that the small particles when aggregated were in an effective size range for Brachionus, while the aggregated larger spheres became too large to be efficiently ingested. These observations provide the first evidence of a size- and aggregation-dependent feeding interaction between microplastics and rotifers. Microplastics when aggregated with biogenic particles in a natural environment can rapidly change their size-dependent availability. The aggregation properties of microplastics should be taken into account when performing experiments mimicking the natural environment.}, language = {en} } @article{TietjenHuth2006, author = {Tietjen, Britta and Huth, Andreas}, title = {Modelling dynamics of managed tropical rainforests - An aggregated approach}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {199}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2005.11.045}, pages = {421 -- 432}, year = {2006}, abstract = {The overuse of rainforests in the last century and its consequences necessitate a rethinking of logging policies. To this end models have been developed to simulate rainforest dynamics and to allow optional management strategies to be evaluated. Parameterisation of presently existing models for a certain site needs a lot of work, thus the parameterisation effort is too high to apply the models to a wide range of rainforests. Hence, in this paper we introduce the simplified model FORREG using the knowledge we have gained from a more complex model, FORMIX3-Q. The FORREG model uses differential equations to determine the volume growth of three successional species groups. Parameterisation is simplified by a genetic algorithm, which determines the required internal model parameters from characteristics of the forest dynamics. The new model is employed to assess the sustainability of various logging policies in terms of yield and damage. Results for three forests are discussed: (1) the tropical lowland rain forest in the Deramakot Forest Reserve, (2) the Lambir National Park in Malaysia and (3) a subtropical forest in Paraguay. Our model reproduces both undisturbed forest dynamics and dynamics of logged forests simulated with FORMIX3-Q very well. However, the resultant volumes of yield and damage differ slightly from those gained by FORMIX3-Q if short logging cycles are simulated. Choosing longer logging cycles leads to a good correspondence of both models. For the Deramakot Forest Reserve different logging cycles are compared and discussed. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{SaffertAdamlaSchiewecketal.2016, author = {Saffert, Paul and Adamla, Frauke and Schieweck, Rico and Atkins, John F. and Ignatova, Zoya}, title = {An Expanded CAG Repeat in Huntingtin Causes+1 Frameshifting}, series = {The journal of biological chemistry}, volume = {291}, journal = {The journal of biological chemistry}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M116.744326}, pages = {18505 -- 18513}, year = {2016}, abstract = {Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5 end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.}, language = {en} } @article{SchubertDolfenFrischetal.2012, author = {Schubert, Marcel and Dolfen, Daniel and Frisch, Johannes and Roland, Steffen and Steyrleuthner, Robert and Stiller, Burkhard and Chen, Zhihua and Scherf, Ullrich and Koch, Norbert and Facchetti, Antonio and Neher, Dieter}, title = {Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers}, series = {dvanced energy materials}, volume = {2}, journal = {dvanced energy materials}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201100601}, pages = {369 -- 380}, year = {2012}, abstract = {The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4\%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70\%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction.}, language = {en} }