@article{FoersterDeocampoAsratetal.2018, author = {Foerster, Verena and Deocampo, Daniel M. and Asrat, Asfawossen and G{\"u}nter, Christina and Junginger, Annett and Kr{\"a}mer, Kai Hauke and Stroncik, Nicole A. and Trauth, Martin H.}, title = {Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {501}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.04.009}, pages = {111 -- 123}, year = {2018}, abstract = {Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation.}, language = {en} } @article{TrauthFoersterJungingeretal.2018, author = {Trauth, Martin H. and Foerster, Verena and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank}, title = {Abrupt or gradual?}, series = {Quaternary research : an interdisciplinary journal}, volume = {90}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2018.30}, pages = {321 -- 330}, year = {2018}, abstract = {We used a change point analysis on a late Pleistocene-Holocene lake-sediment record from the Chew Bahir basin in the southern Ethiopian Rift to determine the amplitude and duration of past climate transitions. The most dramatic changes occurred over 240 yr (from similar to 15,700 to 15,460 yr) during the onset of the African Humid Period (AHP), and over 990 yr (from similar to 4875 to 3885 yr) during its protracted termination. The AHP was interrupted by a distinct dry period coinciding with the high-latitude Younger Dryas stadial, which had an abrupt onset (less than similar to 100 yr) at similar to 13,260 yr and lasted until similar to 11,730 yr. Wet-dry-wet transitions prior to the AHP may reflect the high-latitude Dansgaard-Oeschger cycles, as indicated by cross-correlation of the potassium record with the NorthGRIP ice core record between similar to 45-20 ka. These findings may contribute to the debates regarding the amplitude, and duration and mechanisms of past climate transitions, and their possible influence on the development of early modern human cultures.}, language = {en} } @article{RachEngelsKahmenetal.2017, author = {Rach, Oliver and Engels, S. and Kahmen, A. and Brauer, Achim and Martin-Puertas, C. and van Geel, B. and Sachse, Dirk}, title = {Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker delta D values in lake Meerfelder Maar sediments}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {172}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.019}, pages = {44 -- 54}, year = {2017}, abstract = {One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (ED values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200-2000 varve years BP), terrestrial lipid biomarker ED showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem change was accompanied by large changes in ED values of aquatic lipid biomarkers, such as nC(21) and nC(23) (by between 22 and 30\%(0)). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the Wag value were influenced by changes in n-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid MN values, which then could be easily misinterpreted in terms of hydro climatic changes. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }