@article{SandauChaabeneGranacher2021, author = {Sandau, Ingo and Chaabene, Helmi and Granacher, Urs}, title = {Concurrent validity of barbell force measured from video-based barbell kinematics during the snatch in male elite weightlifters}, series = {PLOS ONE / Public Library of Science}, volume = {16}, journal = {PLOS ONE / Public Library of Science}, number = {7}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0254705}, pages = {11}, year = {2021}, abstract = {This study examined the concurrent validity of an inverse dynamic (force computed from barbell acceleration [reference method]) and a work-energy (force computed from work at the barbell [alternative method]) approach to measure the mean vertical barbell force during the snatch using kinematic data from video analysis. For this purpose, the acceleration phase of the snatch was analyzed in thirty male medal winners of the 2018 weightlifting World Championships (age: 25.2±3.1 years; body mass: 88.9±28.6 kg). Vertical barbell kinematics were measured using a custom-made 2D real-time video analysis software. Agreement between the two computational approaches was assessed using Bland-Altman analysis, Deming regression, and Pearson product-moment correlation. Further, principal component analysis in conjunction with multiple linear regression was used to assess whether individual differences related to the two approaches are due to the waveforms of the acceleration time-series data. Results indicated no mean difference (p > 0.05; d = -0.04) and an extremely large correlation (r = 0.99) between the two approaches. Despite the high agreement, the total error of individual differences was 8.2\% (163.0 N). The individual differences can be explained by a multiple linear regression model (R2adj = 0.86) on principal component scores from the principal component analysis of vertical barbell acceleration time-series waveforms. Findings from this study indicate that the individual errors of force measures can be associated with the inverse dynamic approach. This approach uses vertical barbell acceleration data from video analysis that is prone to error. Therefore, it is recommended to use the work-energy approach to compute mean vertical barbell force as this approach did not rely on vertical barbell acceleration.}, language = {en} } @article{FestmanBraun2012, author = {Festman, Yariv and Braun, Jochen}, title = {Feature-based attention spreads preferentially in an object-specific manner}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {54}, journal = {Vision research : an international journal for functional aspects of vision.}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2011.12.003}, pages = {31 -- 38}, year = {2012}, abstract = {We studied the spreading of feature-based attention from attended to ignored motion fields (linear, circular, and combinations). When observers attended one of two superimposed motion fields on one side of the visual midline, sub-threshold priming by an ignored motion field was altered significantly on the opposite side of the midline. This attentional spreading was observed only when attended and ignored motion fields conformed to a complex global flow, not when they shared the same linear motion. These findings corroborate an earlier study (Festman \& Braun, 2010), which obtained similar results with a complementary methodology. We conclude that feature-based attention is more complex than hitherto appreciated in that it spreads preferentially in an object-specific manner.}, language = {en} }