@article{BragaAnchietadeCarvalhoBrosinskyetal.2019, author = {Braga, Brennda and Anchieta de Carvalho, Thayslan Renato and Brosinsky, Arlena and F{\"o}rster, Saskia and Medeiros, Pedro Henrique Augusto}, title = {From waste to resource}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {670}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.083}, pages = {158 -- 169}, year = {2019}, abstract = {Reservoir networks have been established worldwide to ensure water supply, but water availability is endangered quantitatively and qualitatively by sedimentation. Reuse of sediment silted in reservoirs as fertilizer has been proposed, thus transforming nutrient-enriched sediments from waste into resource. The aim of this study is to assess the potential of reusing sediment as a nutrient source for agriculture a semiarid basin in Brazil. where 1029 reservoirs were identified. Sedimentation was modelled for the entire reservoir network, accounting for 7 x 10(5) tons of y(-1)sediment deposition. Nutrients contents in reservoir sediments was analysed and com- pared to nutrients contents of agricultural soils in the catchment. The potential of reusing sediment as fertilizer was assessed for maize crops (Zea mays L) and the sediment mass required to fertilize the soil was computed considering that the crop nitrogen requirement would be fully provided by the sediment. Economic feasibility was analysed by comparing the costs of the proposed practice to those obtained if the area was fertilized by traditional means. Results showed that, where reservoirs fall dry frequently and sediments can be removed by excavation, soil fertilization with sediment presents lower costs than those observed for application of commercial chemical fertilizers. Compared to conventional fertilization, when using sediments with high nutrient content, 25\% of costs could be saved, while when using sediments with low nutrient content costs are 9\% higher. According to the local conditions, sediments with nitrogen content above 1.5 g kg(-1) are cost efficient as nitrogen source. However, physical and chemical analyses are recommended to define the sediment mass to be used and to identify any constraint to the application of the practice, like the high sodium adsorption ratio observed in one of the studied reservoirs, which can contribute to soil salinization. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{HundBrownLavkulichetal.2013, author = {Hund, Silja V. and Brown, Sandra and Lavkulich, Les M. and Oswald, Sascha}, title = {Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme}, series = {Water, air \& soil pollution : an international journal of environmental pollution}, volume = {224}, journal = {Water, air \& soil pollution : an international journal of environmental pollution}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {0049-6979}, doi = {10.1007/s11270-013-1643-9}, pages = {13}, year = {2013}, abstract = {High applications of P fertilizers and manure are general practice in intensive agriculture and may cause eutrophication in adjacent streams. Bioavailability of P can be estimated by sequential extractions commonly used for soil or sediment. A single combined method may facilitate more effective comparisons of topsoils and adjoining stream sediments, and enhance management decisions. In this study, the suitability of an established soil P sequential extraction was tested on stream bed sediments. The study was conducted in the Sumas River watershed in the agricultural Lower Fraser Valley, Canada. Sediment samples with differing land use (forest, low and high intensity agriculture) from 1993, 1994, 2008, and 2009 from 14 sites along the Sumas River and tributaries were used. Total sequential extraction concentrations were in agreement with aqua regia digestion (Rs=0.96) and showed consistency over the study time sequence. P fractions released by 0.5 M NaHCO3 (median 14 \%), 0.1 M NaOH (33 \%), and 1.0 M HCl (38 \%) were significantly (alpha=0.05) higher than P released by other extractants. These three extraction steps provide a practical and time-effective assessment of P lability in stream sediments and may be used as a combined scheme for sediment and soil. Analytical results further revealed that land use has a major and characteristic impact on P lability. With a land use change from forest to intensive agriculture, results showed an increase in total P concentrations (30 to 4,000 ppm) and in P lability, in particular for the moderately labile NaOH-P fraction (20 to 50 \%).}, language = {en} }