@article{LinMayerWippert2022, author = {Lin, Chiao-I and Mayer, Frank and Wippert, Pia-Maria}, title = {The prevalence of chronic ankle instability in basketball athletes}, series = {BMC sports science, medicine \& rehabilitation}, volume = {14}, journal = {BMC sports science, medicine \& rehabilitation}, number = {1}, publisher = {BMC}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-022-00418-0}, pages = {9}, year = {2022}, abstract = {Background Ankle sprain is the most common injury in basketball. Chronic ankle instability develops from an acute ankle sprain may cause negative effects on quality of life, ankle functionality or on increasing risk for recurrent ankle sprains and post-traumatic osteoarthritis. To facilitate a preventative strategy of chronic ankle instability (CAI) in the basketball population, gathering epidemiological data is essential. However, the epidemiological data of CAI in basketball is limited. Therefore, this study aims to investigate the prevalence of CAI in basketball athletes and to determine whether gender, competitive level, and basketball playing position influence this prevalence. Methods In a cross-sectional study, in total 391 Taiwanese basketball athletes from universities and sports clubs participated. Besides non-standardized questions about demographics and their history of ankle sprains, participants further filled out the standard Cumberland Ankle Instability Tool applied to determine the presence of ankle instability. Questionnaires from 255 collegiate and 133 semi-professional basketball athletes (male = 243, female = 145, 22.3 +/- 3.8 years, 23.3 +/- 2.2 kg/m(2)) were analyzed. Differences in prevalence between gender, competitive level and playing position were determined using the Chi-square test. Results In the surveyed cohort, 26\% had unilateral CAI while 50\% of them had bilateral CAI. Women had a higher prevalence than men in the whole surveyed cohort (X-2(1) = 0.515, p = 0.003). This gender disparity also showed from sub-analyses, that the collegiate female athletes had a higher prevalence than collegiate men athletes (X-2(1) = 0.203, p = 0.001). Prevalence showed no difference between competitive levels (p > 0.05) and among playing positions (p > 0.05). Conclusions CAI is highly prevalent in the basketball population. Gender affects the prevalence of CAI. Regardless of the competitive level and playing position the prevalence of CAI is similar. The characteristic of basketball contributes to the high prevalence. Prevention of CAI should be a focus in basketball. When applying the CAI prevention measures, gender should be taken into consideration.}, language = {en} } @article{KhajooeiLinMayeretal.2019, author = {Khajooei, Mina and Lin, Chiao-I and Mayer, Frank and Mueller, Steffen}, title = {Muscle activity and strength in maximum isokinetic legpress testing with unstable footplates in active individuals}, series = {Isokinetics and exercise science : official journal of the European Isokinetic Society}, volume = {27}, journal = {Isokinetics and exercise science : official journal of the European Isokinetic Society}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0959-3020}, doi = {10.3233/IES-182206}, pages = {177 -- 183}, year = {2019}, abstract = {BACKGROUND: Compensating unstable situations is an important functional capability to maintain joint stability, to compensate perturbations and to prevent (re-)injury. Therefore, reduced maximum strength and altered neuromuscular activity are expected by inducing instability to load test situations. Possible effects are not clear for induced instability during maximum legpress tests in healthy individuals. OBJECTIVE: To compare isokinetic legpress (LP) strength and lower-leg muscle activity using stable (S) and unstable (UN) footplates. METHODS: 16 males (28 +/- 4 yrs, 179 +/- 7 cm, 75 +/- 8 kg) performed five maximum LP in concentric (CON) and eccentric (ECC) mode. The maximum force (Fmax) and muscle activity were measured under conditions of S and UN footplates. The tested muscles comprised of the tibialis anterior (TA), peroneus longus (PL) and soleus (SOL) and their activity were quantified against the MVIC of each muscle respectively. RESULTS: The main finding revealed a significant reduction in Fmax under UN condition: 11.9 +/- 11.3\% in CON and 23.5 +/- 47.8\% in ECC (P < 0.05). Significant findings were also noted regarding the RMS derived values of the EMG of PL and TA. CONCLUSION: Unstable LP reduced force generation and increased the activity of PL and TA muscles which confirmed greater neuromuscular effort to compensate instability. This may have some implications for resistance testing and training coupled with an unstable base in the prevention and rehabilitation of injury to the neuromusculoskeletal system.}, language = {en} }