@article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} } @article{ZimmermannZimmermannTurneretal.2014, author = {Zimmermann, Beate and Zimmermann, Alexander and Turner, Benjamin L. and Francke, Till and Elsenbeer, Helmut}, title = {Connectivity of overland flow by drainage network expansion in a rain forest catchment}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2012WR012660}, pages = {1457 -- 1473}, year = {2014}, abstract = {Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.}, language = {en} } @article{DieterElsenbeerTurner2010, author = {Dieter, Daniela and Elsenbeer, Helmut and Turner, Benjamin L.}, title = {Phosphorus fractionation in lowland tropical rainforest soils in central Panama}, issn = {0341-8162}, doi = {10.1016/j.catena.2010.05.010}, year = {2010}, abstract = {Phosphorus availability is commonly assumed to limit productivity in lowland tropical rainforests, yet there is relatively little information on the chemical forms of soil phosphorus in such ecosystems. We used the Hedley sequential fractionation scheme to assess phosphorus chemistry in five soils supporting tropical rainforest on Barro Colorado Island, Republic of Panama. The soils represented a range of orders (Inceptisols, Alfisols, and Oxisols) formed on contrasting geological substrates and topography, but under uniform climate and vegetation. Total phosphorus in surface horizons ranged between 315 and 1114 mg P kg(-1), being lowest on a soil derived from marine sediments and highest on soils derived from andesite. The majority of the phosphorus occurred in recalcitrant forms, although between 14\% and 39\% occurred as organic phosphorus. Readily-available phosphate, as extracted by anion-exchange membranes, occurred in small concentrations (4-13 mg P kg(-1)), although labile phosphorus, defined as phosphate extracted by anion-exchange membrane plus inorganic and organic phosphorus extracted by 0.5 M NaHCO3, accounted for between 4.7\% and 11.4\% of the total soil phosphorus. Our results indicate a strong control of geology and topography on soil phosphorus in tropical rainforests, which may have important implications for understanding the diversity and distribution of plant species in such ecosystems. Further, some of the most common soils on Barro Colorado Island, including those on the 50 ha forest dynamics plot, are rich in phosphorus despite their relatively advanced stage of pedogenesis.}, language = {en} }