@article{RiebeEderRitscheletal.2016, author = {Riebe, Daniel and Eder, Alexander and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beil, Andreas and Blaschke, Michael and Ludwig, Thomas}, title = {Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates}, series = {Journal of mass spectrometr}, volume = {51}, journal = {Journal of mass spectrometr}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.3784}, pages = {566 -- 577}, year = {2016}, abstract = {A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{PrimusRitschelSigueenzaetal.2014, author = {Primus, Philipp-Alexander and Ritschel, Thomas and Sigueenza, Pilar Y. and Cauqui, Miguel Angel and Hernandez-Garrido, Juan Carlos and Kumke, Michael Uwe}, title = {High-resolution spectroscopy of europium-doped ceria as a tool to correlate structure and catalytic activity}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {40}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp505467r}, pages = {23349 -- 23360}, year = {2014}, abstract = {Site-selective emission spectra of Eu3+-doped CeO2 nanoparticles up to the D-5(0) - F-7(5) transition were recorded under cryogenic conditions to identify the local structure around the Eu3+ dopants in ceria. It is found that pretreatment conditions are crucial for the redistribution of dopants from a broad variety of environments to six well-defined lattice sites. The influence of the dopant and the host structure on the catalytic activity was investigated. A relationship between structure and reactivity is discussed. It is shown that oxygen transport is most efficient in particles with a pronounced amorphous character.}, language = {en} } @article{CywinskiMoroRitscheletal.2011, author = {Cywinski, Piotr J. and Moro, Artur J. and Ritschel, Thomas and Hildebrandt, Niko and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Sensitive and selective fluorescence detection of guanosine nucleotides by nanoparticles conjugated with a naphthyridine receptor}, series = {Analytical \& bioanalytical chemistry}, volume = {399}, journal = {Analytical \& bioanalytical chemistry}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-010-4420-2}, pages = {1215 -- 1222}, year = {2011}, abstract = {Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl) ethynyl)-1,8-naphthyridin- 2-yl) acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides. Upon interaction with nucleotides, the fluorescence of the nanosensor is gradually quenched yielding Stern-Volmer constants in the range of 2.1 to 35.9mM(-1). For all the studied quenchers, limits of detection (LOD) and tolerance levels for the nanosensors were also determined. The lowest (3 sigma) LOD was found for guanosine 3',5'-cyclic monophosphate (cGMP) and it was as low as 150 ng/ml. In addition, we demonstrated that the spatial arrangement of bound analytes on the nanosensors' surfaces is what is responsible for their selectivity to different guanosine nucleotides. We found a correlation between the changes of the fluorescence signal and the number of phosphate groups of a nucleotide. Results of molecular modeling and zeta-potential measurements confirm that the arrangement of analytes on the surface provides for the selectivity of the nanosensors. These fluorescent nanosensors have the potential to be applied in multi-analyte, array-based detection platforms, as well as in multiplexed microfluidic systems.}, language = {en} } @article{KupstatRitschelKumke2011, author = {Kupstat, Annette and Ritschel, Thomas and Kumke, Michael Uwe}, title = {Oxazine Dye-Conjugated DNA Oligonucleotides Forster Resonance Energy Transfer in View of Molecular Dye-DNA Interactions}, series = {Bioconjugate chemistry}, volume = {22}, journal = {Bioconjugate chemistry}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/bc200379y}, pages = {2546 -- 2557}, year = {2011}, abstract = {In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive Forster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large Forster distance of similar to 7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but also for monitoring interactions of larger biomolecules such as proteins.}, language = {en} } @article{AwasthiRitschelLipowskyetal.2013, author = {Awasthi, Neha and Ritschel, Thomas and Lipowsky, Reinhard and Knecht, Volker}, title = {Standard gibbs energies of formation and equilibrium constants from ab-initio calculations covalent dimerization of NO2 and synthesis of NH3}, series = {The journal of chemical thermodynamics}, volume = {62}, journal = {The journal of chemical thermodynamics}, number = {3}, publisher = {Elsevier}, address = {London}, issn = {0021-9614}, doi = {10.1016/j.jct.2013.03.011}, pages = {211 -- 221}, year = {2013}, abstract = {Standard quantum chemical methods are used for accurate calculation of thermochemical properties such as enthalpies of formation, entropies and Gibbs energies of formation. Equilibrium reactions are widely investigated and experimental measurements often lead to a range of reaction Gibbs energies and equilibrium constants. It is useful to calculate these equilibrium properties from quantum chemical methods in order to address the experimental differences. Furthermore, most standard calculation methods differ in accuracy and feasibility of the system size. Hence, asystematic comparison of equilibrium properties calculated with different numerical algorithms would provide a useful reference. We select two well-known gas phase equilibrium reactions with small molecules: covalent dimer formation of NO2 (2NO(2) reversible arrow N2O4) and the synthesis of NH3 (N-2 + 3 H-2 reversible arrow 2NH(3)). We test four quantum chemical methods denoted by G3B3, CBS-APNO, W1 and CCSD(T) with aug-cc-pVXZ basis sets (X = 2, 3, and 4), to obtain thermochemical data for NO2, N2O4, and NH3. The calculated standard formation Gibbs energies Delta(f)G degrees are used to calculate standard reaction Gibbs energies Delta(r)G degrees and standard equilibrium constants K-eq for the two reactions. Standard formation enthalpies Delta H-f degrees are calculated in a more reliable way using high-level methods such as W1 and CCSD(T). Standard entropies S degrees for the molecules are calculated well within the range of experiments for all methods, however, the values of standard formation Gibbs energies Delta(f)G degrees show some dependence on the choice of the method. High-level methods perform better for the calculation of molecular energies, however, simpler methods such as G3B3 and CBS-APNO perform quite well in the calculation of total reaction energies and equilibrium constants, provided that the chemical species involved do not exhibit molecular geometries that are difficult to handle by the applied method. The temperature dependence of standard reaction Gibbs energy Delta(r)G degrees for the NH3 reaction is discussed by using the calculated standard formation Gibbs energies Delta(f)G degrees of the reaction species at 298.15 K. The corresponding equilibrium constant K-eq as a function of temperature is found to be close to experimental values.}, language = {en} } @article{BrendlerRiebeRitscheletal.2013, author = {Brendler, Christian and Riebe, Daniel and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Investigation of neuroleptics and other aromatic compounds by laser-based ion mobility mass spectrometry}, series = {Analytical \& bioanalytical chemistry}, volume = {405}, journal = {Analytical \& bioanalytical chemistry}, number = {22}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-012-6654-7}, pages = {7019 -- 7029}, year = {2013}, abstract = {Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths lambda = 213 and 266 nm and pulse energies between 50 and 300 mu J. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1-50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion-molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.}, language = {en} } @article{MahapatraZuhrtVetteretal.1996, author = {Mahapatra, Susanta and Zuhrt, Christian and Vetter, Reinhard and Nguyen, Huu Tong and Ritschel, Thomas and Z{\"u}licke, Lutz}, title = {Spectroscopy and intramalocular dynamics of collinear N2H+ on a new potential energy surface}, series = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, volume = {1996, 03}, journal = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, publisher = {Univ.}, address = {Potsdam}, pages = {28, [8] S. : graph. Darst.}, year = {1996}, language = {en} } @article{GianturcoKumarVetteretal.1997, author = {Gianturco, Franco A. and Kumar, Sanjay and Vetter, Reinhard and Ritschel, Thomas and Z{\"u}licke, Lutz}, title = {Interaction anisotropy and vibrational excitation in proton scattering from N2(1sigma g+)}, year = {1997}, language = {en} } @article{MahapatraVetterZuhrtetal.1997, author = {Mahapatra, Susanta and Vetter, Reinhard and Zuhrt, Christian and Nguyen, Huu Tong and Ritschel, Thomas and Z{\"u}licke, Lutz}, title = {Bound states and time-dependent dynamics of the N2H+ molecular ion in its ground electronic state. I. 2D treatment}, year = {1997}, language = {en} } @article{MahapatraVetterZuhrtetal.1998, author = {Mahapatra, Susanta and Vetter, Reinhard and Zuhrt, Christian and Nguyen, Huu Tong and Ritschel, Thomas and Z{\"u}licke, Lutz}, title = {Ground state potential energy surface, 3D time-dependent intramolecular dynamics and vibrational states of the N2H+ molecular ion}, year = {1998}, language = {en} }