@article{LunaBookhagenNiedermannetal.2018, author = {Luna, Lisa Victoria and Bookhagen, Bodo and Niedermann, Samuel and Rugel, Georg and Scharf, Andreas and Merchel, Silke}, title = {Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau}, series = {Earth \& planetary science letters}, volume = {500}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.07.034}, pages = {242 -- 253}, year = {2018}, abstract = {Glacial deposits on the high-altitude, arid southern Central Andean Plateau (CAP), the Puna in northwestern Argentina, document past changes in climate, but the associated geomorphic features have rarely been directly dated. This study provides direct age control of glacial moraine deposits from the central Puna (24 degrees S) at elevations of 3900-5000 m through surface exposure dating with cosmogenic nuclides. Our results show that the most extensive glaciations occurred before 95 ka and an additional major advance occurred between 46 and 39 ka. The latter period is synchronous with the highest lake levels in the nearby Pozuelos basin and the Minchin (Inca Huasi) wet phase on the Altiplano in the northern CAP. None of the dated moraines produced boulder ages corresponding to the Tauca wet phase (24-15 ka). Additionally, the volcanic lithologies of the deposits allow us to establish production ratios at low latitude and high elevation for five different nuclide and mineral systems: Be-10, Ne-21, and Al-26 from quartz (11 or 12 samples) and He-3 and Ne-21 from pyroxene (10 samples). We present production ratios for all combinations of the measured nuclides and cross-calibrated production rates for 21Ne in pyroxene and quartz for the high, (sub-)tropical Andes. The production rates are based on our Be-10-normalized production ratios and a weighted mean of reference 10Be production rates calibrated in the high, tropical Andes (4.02 +/- 0.12 at g(-1) yr(-1)). These are, Ne-21(qtz): 18.1 +/- 1.2 at g(-1) yr(-1) and Ne-21(px): 36.6 +/- 1.8 at g(-1) yr(-1) (En(88-94)) scaled to sea level and high latitude using the Lal/Stone scheme, with 1 sigma uncertainties. As He-3 and Al-26 have been directly calibrated in the tropical Andes, we recommend using those rates. Finally, we compare exposure ages calculated using all measured cosmogenic nuclides from each sample, including 11 feldspar samples measured for Cl-36, and a suite of previously published production rates. (C) 2018 Published by Elsevier B.V.}, language = {en} } @phdthesis{Eugster2018, author = {Eugster, Patricia}, title = {Landscape evolution in the western Indian Himalaya since the Miocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420329}, school = {Universit{\"a}t Potsdam}, pages = {XXI, 208}, year = {2018}, abstract = {The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth's surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the B{\o}lling/Aller{\o}d interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas.}, language = {en} }