@article{NoteKosmellaKoetz2006, author = {Note, Carine and Kosmella, Sabine and Koetz, Joachim}, title = {Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {290}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, number = {1-3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2006.05.018}, pages = {150 -- 156}, year = {2006}, abstract = {This paper is focused on the use of branched poly(ethyleneimine) (PEI) as reducing as well as stabilizing agent for the formation of gold nanoparticles in different media. The process of nanoparticle formation was investigated, in the absence of any other reducing agents, in microemulsion template phase in comparison to the nucleation process in aqueous polymer solution. On the one hand, it was shown that the polyelectrolyte can be used for the controlled single-step synthesis and stabilization of gold nanoparticles via a nucleation reaction and particles with an average diameter of 7.1 nm can be produced. On the other hand, it was demonstrated that the polymer can also act as reducing and stabilizing agent in much more complex systems, i.e. in water-in-oil (w/o) microemulsion droplets. The reverse microemulsion droplets of the quaternary system sodium dodecylsulfate (SDS)/toluene-pentanol (1:1)/water were successfully used for the synthesis of gold nanoparticles. The polymer, incorporated in the droplets, exhibits reducing properties, adsorbs on the surface of the nanoparticles and prevents their aggregation. Consequently, nanoparticles of 8.6 nm can be redispersed after solvent evaporation without a change of their size. Nevertheless, the polymer acts already as a "template" during the formation of the nanoparticles in water and in microemulsion, so that an additional template effect of the microemulsion is not observed. The particle formation for both methods is checked by means of UV-vis spectroscopy and the particle size and size distribution are investigated via dynamic light scattering and transmission electron microscopy (TEM). (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{DolyaRojasKosmellaetal.2013, author = {Dolya, Natalya and Rojas, Oscar and Kosmella, Sabine and Tiersch, Brigitte and Koetz, Joachim and Kudaibergenov, Sarkyt}, title = {"One-Pot" in situ frmation of Gold Nanoparticles within Poly(acrylamide) Hydrogels}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200727}, pages = {1114 -- 1121}, year = {2013}, abstract = {This paper focuses on two different strategies to incorporate gold nanoparticles (AuNPs) into the matrix of polyacrylamide (PAAm) hydrogels. Poly(ethyleneimine) (PEI) is used as both reducing and stabilizing agent for the formation of AuNPs. In addition, the influence of an ionic liquid (IL) (i.e., 1-ethyl-3-methylimidazolium ethylsulfate) on the stability of the nanoparticles and their immobilization in the hydrogel is investigated The results show that AuNPs surrounded by a shell containing PEI and IL, synthesized according to the one-pot approach, are much better immobilized within the PAAm hydrogel. Hereby, the IL is responsible for structural changes in the hydrogel as well as the improved stabilization and embedding of the AuNPs into the polymer gel matrix.}, language = {en} } @article{FudickarPavasheLinker2017, author = {Fudickar, Werner and Pavashe, Prashant and Linker, Torsten}, title = {Thiocarbohydrates on Gold Nanoparticles: Strong Influence of Stereocenters on Binding Affinity and Interparticle Forces}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201700846}, pages = {8685 -- 8693}, year = {2017}, abstract = {Carbohydrates carrying thiol groups at the C-2 position have been attached to gold nanoparticles (AuNPs) with stereocenters in close proximity to the surface for the first time. Their configurations can be clearly distinguished by the tendency of particle aggregation. AuNP surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and IR spectroscopy indicate that the thiocarbohydrates replace citrate molecules at different rates, causing aggregation and eventually precipitation. A quantitative formulation of this aggregation process shows that reactivities can vary by several magnitudes. Adsorption isotherms and kinetics also demonstrate that the number of thiocarbohydrates varies by a factor of two. Molecular mechanics force field (MMFF) calculations reveal their relative orientations. Based on these models, the different binding behavior can be ascribed to attractive van der Waals forces and hydrogen bonds. Such interactions occur either between the carbohydrate and AuNPs, by lateral intermolecular forces at the surface, or by interparticle attraction, in analogy to cell-surface carbohydrates of biological recognition systems. Aggregation of NPs therefore act as an indicator to differentiate between various carbohydrates with defined configurations.}, language = {en} } @phdthesis{Heck2017, author = {Heck, Christian}, title = {Gold and silver nanolenses self-assembled by DNA origami}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409002}, school = {Universit{\"a}t Potsdam}, pages = {ix, 125}, year = {2017}, abstract = {Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ.}, language = {en} } @article{HeckPrinzDatheetal.2017, author = {Heck, Christian and Prinz, Julia and Dathe, Andre and Merk, Virginia and Stranik, Ondrej and Fritzsche, Wolfgang and Kneipp, Janina and Bald, Ilko}, title = {Gold Nanolenses Self-Assembled by DNA Origami}, series = {ACS Photonics}, volume = {4}, journal = {ACS Photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.6b00946}, pages = {1123 -- 1130}, year = {2017}, abstract = {Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement.}, language = {en} } @article{WagnerOdedShenharetal.2017, author = {Wagner, Tom and Oded, Meirav and Shenhar, Roy and B{\"o}ker, Alexander}, title = {Two-dimensionally ordered AuNP array formation via microcontact printing on lamellar diblock copolymer films}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3853}, pages = {623 -- 628}, year = {2017}, abstract = {The construction of nano-sized, two-dimensionally ordered nanoparticle (NP) superstructures is important for various advanced applications such as photonics, sensing, catalysis, or nano-circuitry. Currently, such structures are fabricated using the templated organization approach, in which the templates are mainly created by photo-lithography or laser-lithography and other invasive top-down etching procedures. In this work, we present an alternative bottom-up preparation method for the controlled deposition of NPs into hierarchical structures. Lamellar polystyrene-block-poly(2-vinylpyridinium) thin films featuring alternating stripes of neutral PS and positively charged P2VP domains serve as templates, allowing for the selective adsorption of negatively charged gold NPs. Dense NP assembly is achieved by a simple immersion process, whereas two-dimensionally ordered arrays of NPs are realized by microcontact printing (mu CP), utilizing periodic polydimethylsiloxane wrinkle grooves loaded with gold NPs. This approach enables the facile construction of hierarchical NP arrays with variable geometries. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{StanglmairNeubrechPacholski2018, author = {Stanglmair, Christoph and Neubrech, Frank and Pacholski, Claudia}, title = {Chemical routes to surface enhanced infrared absorption (SEIRA) substrates}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {232}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {9-11}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2018-1132}, pages = {1527 -- 1539}, year = {2018}, abstract = {Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement - leading to surface plasmon resonances from the visible to the infrared wavelength range. Finally, SEIRA enhancement factors are determined. Gold nanoparticle double layers show the best performance as SEIRA substrates.}, language = {en} } @article{RajuKoetz2021, author = {Raju, Rajarshi Roy and Koetz, Joachim}, title = {Inner rotation of Pickering Janus emulsions}, series = {Nanomaterials : open access journal}, volume = {11}, journal = {Nanomaterials : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano11123312}, pages = {6}, year = {2021}, abstract = {Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core-shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles.}, language = {en} } @misc{RajuKoetz2021, author = {Raju, Rajarshi Roy and Koetz, Joachim}, title = {Inner Rotation of Pickering Janus Emulsions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1249}, issn = {1866-8372}, doi = {10.25932/publishup-55362}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553628}, pages = {6}, year = {2021}, abstract = {Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core-shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles.}, language = {en} }