@article{WamburaDietrichLischeid2018, author = {Wambura, Frank Joseph and Dietrich, Ottfried and Lischeid, Gunnar}, title = {Improving a distributed hydrological model using evapotranspiration-related boundary conditions as additional constraints in a data-scarce river basin}, series = {Hydrological processes}, volume = {32}, journal = {Hydrological processes}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11453}, pages = {759 -- 775}, year = {2018}, abstract = {Many hydrological models have been calibrated and validated using hydrographs alone. Because streamflow integrates water fluxes in space, many distributed hydrological models tend to have multiple feasible descriptions of hydrological processes. This equifinality usually leads to substantial prediction uncertainty. In this study, additional constraintsnamely, the spatial patterns of long-term average evapotranspiration (ET), shallow groundwater level, and land cover changewere used to investigate the reduction of equifinality and prediction uncertainty in the Soil and Water Assessment Tool (SWAT) in the Wami River basin in Tanzania. The additional constraints were used in the set-up, parameter emulation and calibration of the SWAT model termed an improved hydrological model (IHM). The IHM was then compared with a classical hydrological model (CHM) that was also developed using the SWAT model but without additional constraints. In the calibration, the CHM used only the hydrograph, but the IHM used the hydrograph and the spatial pattern of long-term average ET as an additional constraint. The IHM produced a single, unique behavioural simulation, whereas the CHM produced many behavioural simulations that resulted in prediction uncertainty. The performance of the IHM with respect to the hydrograph was more consistent than that of the CHM, and the former clearly captured the mean behaviour of ET in the river basin. Therefore, we conclude that additional constraints substantially reduce equifinality and prediction uncertainty in a distributed hydrological model.}, language = {en} } @article{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred F. and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {66}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1846740}, pages = {59 -- 74}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @misc{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred F. and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568766}, pages = {18}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @article{SarrazinKumarBasuetal.2022, author = {Sarrazin, Fanny J. and Kumar, Rohini and Basu, Nandita B. and Musolff, Andreas and Weber, Michael and Van Meter, Kimberly J. and Attinger, Sabine}, title = {Characterizing catchment-scale nitrogen legacies and constraining their uncertainties}, series = {Water resources research}, volume = {58}, journal = {Water resources research}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2021WR031587}, pages = {32}, year = {2022}, abstract = {Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g., soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dynamics of legacy components. This study aims to gain a better understanding of the long-term fate of the N inputs and its uncertainties, using a legacy-driven N model (ELEMeNT) in Germany's largest national river basin (Weser; 38,450 km(2)) over the period 1960-2015. We estimate the nine model parameters based on a progressive constraining strategy, to assess the value of different observational data sets. We demonstrate that beyond in-stream N loading, soil N content and in-stream N concentration allow to reduce the equifinality in model parameterizations. We find that more than 50\% of the N surplus denitrifies (1480-2210 kg ha(-1)) and the stream export amounts to around 18\% (410-640 kg ha(-1)), leaving behind as much as around 230-780 kg ha(-1) of N in the (soil) source zone and 10-105 kg ha(-1) in the subsurface. A sensitivity analysis reveals the importance of different factors affecting the residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification rates, a coefficient characterizing the protection of organic N in source zone and N surplus input. Our study calls for proper consideration of uncertainties in N legacy characterization, and discusses possible avenues to further reduce the equifinality in water quality modeling.}, language = {en} }