@article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} } @misc{deVeraAlawiBackhausetal.2019, author = {de Vera, Jean-Pierre Paul and Alawi, Mashal and Backhaus, Theresa and Baque, Mickael and Billi, Daniela and Boettger, Ute and Berger, Thomas and Bohmeier, Maria and Cockell, Charles and Demets, Rene and de la Torre Noetzel, Rosa and Edwards, Howell and Elsaesser, Andreas and Fagliarone, Claudia and Fiedler, Annelie and Foing, Bernard and Foucher, Frederic and Fritz, J{\"o}rg and Hanke, Franziska and Herzog, Thomas and Horneck, Gerda and H{\"u}bers, Heinz-Wilhelm and Huwe, Bj{\"o}rn and Joshi, Jasmin Radha and Kozyrovska, Natalia and Kruchten, Martha and Lasch, Peter and Lee, Natuschka and Leuko, Stefan and Leya, Thomas and Lorek, Andreas and Martinez-Frias, Jesus and Meessen, Joachim and Moritz, Sophie and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Ott, Sieglinde and Pacelli, Claudia and Podolich, Olga and Rabbow, Elke and Reitz, G{\"u}nther and Rettberg, Petra and Reva, Oleg and Rothschild, Lynn and Garcia Sancho, Leo and Schulze-Makuch, Dirk and Selbmann, Laura and Serrano, Paloma and Szewzyk, Ulrich and Verseux, Cyprien and Wadsworth, Jennifer and Wagner, Dirk and Westall, Frances and Wolter, David and Zucconi, Laura}, title = {Limits of life and the habitability of Mars}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1897}, pages = {145 -- 157}, year = {2019}, abstract = {BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.}, language = {en} }