@article{SchirmackBoehmBraueretal.2014, author = {Schirmack, Janosch and Boehm, Michael and Brauer, Chris and L{\"o}hmannsr{\"o}ben, Hans-Gerd and de Vera, Jean-Pierre Paul and Moehlmann, Diedrich and Wagner, Dirk}, title = {Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions}, series = {Planetary and space science}, volume = {98}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2013.08.019}, pages = {198 -- 204}, year = {2014}, abstract = {On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 degrees C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out. (C) 2013 Published by Elsevier Ltd.}, language = {en} } @phdthesis{Schirmack2015, author = {Schirmack, Janosch}, title = {Activity of methanogenic archaea under simulated Mars analog conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73010}, school = {Universit{\"a}t Potsdam}, pages = {VI, 108}, year = {2015}, abstract = {Assumed comparable environmental conditions of early Mars and early Earth in 3.7 Ga ago - at a time when first fossil records of life on Earth could be found - suggest the possibility of life emerging on both planets in parallel. As conditions changed, the hypothetical life on Mars either became extinct or was able to adapt and might still exist in biological niches. The controversial discussed detection of methane on Mars led to the assumption, that it must have a recent origin - either abiotic through active volcanism or chemical processes, or through biogenic production. Spatial and seasonal variations in the detected methane concentrations and correlations between the presence of water vapor and geological features such as subsurface hydrogen, which are occurring together with locally increased detected concentrations of methane, gave fuel to the hypothesis of a possible biological source of the methane on Mars. Therefore the phylogenetically old methanogenic archaea, which have evolved under early Earth conditions, are often used as model-organisms in astrobiological studies to investigate the potential of life to exist in possible extraterrestrial habitats on our neighboring planet. In this thesis methanogenic archaea originating from two extreme environments on Earth were investigated to test their ability to be active under simulated Mars analog conditions. These extreme environments - the Siberian permafrost-affected soil and the chemoautotrophically based terrestrial ecosystem of Movile cave, Romania - are regarded as analogs for possible Martian (subsurface) habitats. Two novel species of methanogenic archaea isolated from these environments were described within the frame of this thesis. It could be shown that concentrations up to 1 wt\% of Mars regolith analogs added to the growth media had a positive influence on the methane production rates of the tested methanogenic archaea, whereas higher concentrations resulted in decreasing rates. Nevertheless it was possible for the organisms to metabolize when incubated on water-saturated soil matrixes made of Mars regolith analogs without any additional nutrients. Long-term desiccation resistance of more than 400 days was proven with reincubation and indirect counting of viable cells through a combined treatment with propidium monoazide (to inactivate DNA of destroyed cells) and quantitative PCR. Phyllosilicate rich regolith analogs seem to be the best soil mixtures for the tested methanogenic archaea to be active under Mars analog conditions. Furthermore, in a simulation chamber experiment the activity of the permafrost methanogen strain Methanosarcina soligelidi SMA-21 under Mars subsurface analog conditions could be proven. Through real-time wavelength modulation spectroscopy measurements the increase in the methane concentration at temperatures down to -5 °C could be detected. The results presented in this thesis contribute to the understanding of the activity potential of methanogenic archaea under Mars analog conditions and therefore provide insights to the possible habitability of present-day Mars (near) subsurface environments. Thus, it contributes also to the data interpretation of future life detection missions on that planet. For example the ExoMars mission of the European Space Agency (ESA) and Roscosmos which is planned to be launched in 2018 and is aiming to drill in the Martian subsurface.}, language = {en} } @article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} }