@article{AdamReitenbachElsner2017, author = {Adam, Maurits and Reitenbach, Ivanina and Elsner, Birgit}, title = {Agency cues and 11-month-olds' and adults' anticipation of action goals}, series = {Cognitive Development}, volume = {43}, journal = {Cognitive Development}, publisher = {Elsevier}, address = {New York}, issn = {0885-2014}, doi = {10.1016/j.cogdev.2017.02.008}, pages = {37 -- 48}, year = {2017}, abstract = {For the processing of goal-directed actions, some accounts emphasize the importance of experience with the action or the agent. Other accounts stress the importance of agency cues. We investigated the impact of agency cues on 11-month-olds' and adults' goal anticipation for a grasping-action performed by a mechanical claw. With an eyetracker, we measured anticipations in two conditions, where the claw was displayed either with or without agency cues. In two experiments, 11-month-olds were predictive when agency cues were present, but reactive when no agency cues were presented. Adults were predictive in both conditions. Furthermore, 11-month-olds rapidly learned to predict the goal in the agency condition, but not in the mechanical condition. Adults' predictions did not change across trials in the agency condition, but decelerated in the mechanical condition. Thus, agency cues and own action experience are important for infants' and adults' online processing of goal-directed actions by non-human agents.}, language = {en} } @phdthesis{Stone2020, author = {Stone, Kate}, title = {Predicting long-distance lexical content in German verb-particle constructions}, doi = {10.25932/publishup-47679}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476798}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {A large body of research now supports the presence of both syntactic and lexical predictions in sentence processing. Lexical predictions, in particular, are considered to indicate a deep level of predictive processing that extends past the structural features of a necessary word (e.g. noun), right down to the phonological features of the lexical identity of a specific word (e.g. /kite/; DeLong et al., 2005). However, evidence for lexical predictions typically focuses on predictions in very local environments, such as the adjacent word or words (DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004). Predictions in such local environments may be indistinguishable from lexical priming, which is transient and uncontrolled, and as such may prime lexical items that are not compatible with the context (e.g. Kukona et al., 2014). Predictive processing has been argued to be a controlled process, with top-down information guiding preactivation of plausible upcoming lexical items (Kuperberg \& Jaeger, 2016). One way to distinguish lexical priming from prediction is to demonstrate that preactivated lexical content can be maintained over longer distances. In this dissertation, separable German particle verbs are used to demonstrate that preactivation of lexical items can be maintained over multi-word distances. A self-paced reading time and an eye tracking experiment provide some support for the idea that particle preactivation triggered by a verb and its context can be observed by holding the sentence context constant and manipulating the predictabilty of the particle. Although evidence of an effect of particle predictability was only seen in eye tracking, this is consistent with previous evidence suggesting that predictive processing facilitates only some eye tracking measures to which the self-paced reading modality may not be sensitive (Staub, 2015; Rayner1998). Interestingly, manipulating the distance between the verb and the particle did not affect reading times, suggesting that the surprisal-predicted faster reading times at long distance may only occur when the additional distance is created by information that adds information about the lexical identity of a distant element (Levy, 2008; Grodner \& Gibson, 2005). Furthermore, the results provide support for models proposing that temporal decay is not major influence on word processing (Lewandowsky et al., 2009; Vasishth et al., 2019). In the third and fourth experiments, event-related potentials were used as a method for detecting specific lexical predictions. In the initial ERP experiment, we found some support for the presence of lexical predictions when the sentence context constrained the number of plausible particles to a single particle. This was suggested by a frontal post-N400 positivity (PNP) that was elicited when a lexical prediction had been violated, but not to violations when more than one particle had been plausible. The results of this study were highly consistent with previous research suggesting that the PNP might be a much sought-after ERP marker of prediction failure (DeLong et al., 2011; DeLong et al., 2014; Van Petten \& Luka, 2012; Thornhill \& Van Petten, 2012; Kuperberg et al., 2019). However, a second experiment in a larger sample experiment failed to replicate the effect, but did suggest the relationship of the PNP to predictive processing may not yet be fully understood. Evidence for long-distance lexical predictions was inconclusive. The conclusion drawn from the four experiments is that preactivation of the lexical entries of plausible upcoming particles did occur and was maintained over long distances. The facilitatory effect of this preactivation at the particle site therefore did not appear to be the result of transient lexical priming. However, the question of whether this preactivation can also lead to lexical predictions of a specific particle remains unanswered. Of particular interest to future research on predictive processing is further characterisation of the PNP. Implications for models of sentence processing may be the inclusion of long-distance lexical predictions, or the possibility that preactivation of lexical material can facilitate reading times and ERP amplitude without commitment to a specific lexical item.}, language = {en} }