@article{PaslakisBuchmannWestphaletal.2014, author = {Paslakis, Georgios and Buchmann, Arlette F. and Westphal, Sabine and Banaschewski, Tobias and Hohm, Erika and Zimmermann, Ulrich S. and Laucht, Manfred and Deuschle, Michael}, title = {Intrauterine exposure to cigarette smoke is associated with increased ghrelin concentrations in adulthood}, series = {Neuroendocrinology : international journal for basic and clinical studies on neuroendocrine relationships}, volume = {99}, journal = {Neuroendocrinology : international journal for basic and clinical studies on neuroendocrine relationships}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {0028-3835}, doi = {10.1159/000363325}, pages = {123 -- 129}, year = {2014}, abstract = {Background: The appetite-stimulating hormone ghrelin is a fundamental regulator of human energy metabolism. A series of studies support the notion that long-term appetite and weight regulation may be already programmed in early life and it could be demonstrated that the intrauterine environment affects the ghrelin system of the offspring. Animal studies have also shown that intrauterine programming of orexigenic systems persists even until adolescence/adulthood. Methods: We hypothesized that plasma ghrelin concentrations in adulthood may be associated with the intrauterine exposure to cigarette smoke. We examined this hypothesis in a sample of 19-year-olds followed up since birth in the framework of the Mannheim Study of Children at Risk, an ongoing epidemiological cohort study of the long-term outcome of early risk factors. Results: As a main finding, we found that ghrelin plasma concentrations in young adults who had been exposed to cigarette smoke in utero were significantly higher than in those without prenatal smoke exposure. Moreover, individuals with intrauterine nicotine exposure showed a significantly higher prevalence of own smoking habits and lower educational status compared to those in the group without exposure. Conclusion: Smoking during pregnancy may be considered as an adverse intrauterine influence that may alter the endocrine-metabolic status of the offspring even until early adulthood.}, language = {en} } @misc{KlausOst2020, author = {Klaus, Susanne and Ost, Mario}, title = {Mitochondrial uncoupling and longevity}, series = {Experimental gerontology}, volume = {130}, journal = {Experimental gerontology}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0531-5565}, doi = {10.1016/j.exger.2019.110796}, year = {2020}, abstract = {Aging has been viewed both as a random process due to accumulation of molecular and cellular damage over time and as a programmed process linked to cellular pathway important for growth and maturation. These views converge on mitochondria as both the major producer of damaging reactive oxidant species (ROS) and as signaling organelles. A finite proton leak across the inner mitochondrial membrane leading to a slight uncoupling of oxidative phosphorylation and respiration is an intrinsic property of all mitochondria and according to the "uncoupling to survive" hypothesis it has evolved to protect against ROS production to minimize oxidative damage. This hypothesis is supported by evidence linking an increased endogenous, uncoupling protein (UCP1) mediated, as well as experimentally induced mitochondrial uncoupling to an increased lifespan in rodents. This is possibly due to the synergistic activation of molecular pathways linked to life extending effects of caloric restriction as well as a mitohormetic response. Mitohormesis is an adaptive stress response through mitonuclear signaling which increases stress resistance resulting in health promoting effects. Part of this response is the induction of fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), two stress-induced mitokines which elicit beneficial systemic metabolic effects via endocrine action.}, language = {en} } @article{StadionSchuermann2020, author = {Stadion, Mandy and Sch{\"u}rmann, Annette}, title = {Intermittierendes Fasten}, series = {Der Diabetologe}, volume = {16}, journal = {Der Diabetologe}, number = {7}, publisher = {Springer Medizin}, address = {Berlin}, issn = {1860-9716}, doi = {10.1007/s11428-020-00666-z}, pages = {641 -- 646}, year = {2020}, abstract = {Obesity increases the risk of metabolic disorders and can lead to type 2 diabetes. Therefore, the treatment and prevention of obesity represent important medical challenges. Increased physical activity and a reduction in daily caloric intake of 25-30\% are often recommended. Another possibility is intermittent fasting, by limiting dietary caloric content over certain times, i.e. one or more days a week or for more than 14 h a day. Animal and human studies provide evidence that intermittent fasting in obesity leads to a reduction in body fat mass as well as to improvements of metabolic parameters and insulin sensitivity. These positive effects are mediated not only by the decrease in body mass, but also by the activation of metabolic pathways and cellular processes that are specific for fasting conditions. In this article, we describe the current knowledge about the mechanisms induced by intermittent fasting and present results from randomized controlled human trials.}, language = {de} }