@phdthesis{Kossmann2023, author = {Koßmann, Jan}, title = {Unsupervised database optimization}, doi = {10.25932/publishup-58949}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589490}, school = {Universit{\"a}t Potsdam}, pages = {xi, 203}, year = {2023}, abstract = {The amount of data stored in databases and the complexity of database workloads are ever- increasing. Database management systems (DBMSs) offer many configuration options, such as index creation or unique constraints, which must be adapted to the specific instance to efficiently process large volumes of data. Currently, such database optimization is complicated, manual work performed by highly skilled database administrators (DBAs). In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the abilities of the best DBAs due to the enormous number of deployed DBMS instances (some providers maintain millions of instances), missing domain knowledge resulting from data privacy requirements, and the complexity of the configuration tasks. Therefore, we investigate how to automate the configuration of DBMSs efficiently with the help of unsupervised database optimization. While there are numerous configuration options, in this thesis, we focus on automatic index selection and the use of data dependencies, such as functional dependencies, for query optimization. Both aspects have an extensive performance impact and complement each other by approaching unsupervised database optimization from different perspectives. Our contributions are as follows: (1) we survey automated state-of-the-art index selection algorithms regarding various criteria, e.g., their support for index interaction. We contribute an extensible platform for evaluating the performance of such algorithms with industry-standard datasets and workloads. The platform is well-received by the community and has led to follow-up research. With our platform, we derive the strengths and weaknesses of the investigated algorithms. We conclude that existing solutions often have scalability issues and cannot quickly determine (near-)optimal solutions for large problem instances. (2) To overcome these limitations, we present two new algorithms. Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the best index configurations for the evaluated benchmarks. Its selection runtimes are up to 10 times lower compared with other near-optimal approaches. SWIRL is based on reinforcement learning and delivers solutions instantly. These solutions perform within 3 \% of the optimal ones. Extend and SWIRL are available as open-source implementations. (3) Our index selection efforts are complemented by a mechanism that analyzes workloads to determine data dependencies for query optimization in an unsupervised fashion. We describe and classify 58 query optimization techniques based on functional, order, and inclusion dependencies as well as on unique column combinations. The unsupervised mechanism and three optimization techniques are implemented in our open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark's runtime by 26 \% and accelerates some TPC-DS queries by up to 58 times. Additionally, we have developed a cockpit for unsupervised database optimization that allows interactive experiments to build confidence in such automated techniques. In summary, our contributions improve the performance of DBMSs, support DBAs in their work, and enable them to contribute their time to other, less arduous tasks.}, language = {en} } @phdthesis{Halfpap2024, author = {Halfpap, Stefan}, title = {Integer linear programming-based heuristics for partially replicated database clusters and selecting indexes}, doi = {10.25932/publishup-63361}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-633615}, school = {Universit{\"a}t Potsdam}, pages = {iii, 185}, year = {2024}, abstract = {Column-oriented database systems can efficiently process transactional and analytical queries on a single node. However, increasing or peak analytical loads can quickly saturate single-node database systems. Then, a common scale-out option is using a database cluster with a single primary node for transaction processing and read-only replicas. Using (the naive) full replication, queries are distributed among nodes independently of the accessed data. This approach is relatively expensive because all nodes must store all data and apply all data modifications caused by inserts, deletes, or updates. In contrast to full replication, partial replication is a more cost-efficient implementation: Instead of duplicating all data to all replica nodes, partial replicas store only a subset of the data while being able to process a large workload share. Besides lower storage costs, partial replicas enable (i) better scaling because replicas must potentially synchronize only subsets of the data modifications and thus have more capacity for read-only queries and (ii) better elasticity because replicas have to load less data and can be set up faster. However, splitting the overall workload evenly among the replica nodes while optimizing the data allocation is a challenging assignment problem. The calculation of optimized data allocations in a partially replicated database cluster can be modeled using integer linear programming (ILP). ILP is a common approach for solving assignment problems, also in the context of database systems. Because ILP is not scalable, existing approaches (also for calculating partial allocations) often fall back to simple (e.g., greedy) heuristics for larger problem instances. Simple heuristics may work well but can lose optimization potential. In this thesis, we present optimal and ILP-based heuristic programming models for calculating data fragment allocations for partially replicated database clusters. Using ILP, we are flexible to extend our models to (i) consider data modifications and reallocations and (ii) increase the robustness of allocations to compensate for node failures and workload uncertainty. We evaluate our approaches for TPC-H, TPC-DS, and a real-world accounting workload and compare the results to state-of-the-art allocation approaches. Our evaluations show significant improvements for varied allocation's properties: Compared to existing approaches, we can, for example, (i) almost halve the amount of allocated data, (ii) improve the throughput in case of node failures and workload uncertainty while using even less memory, (iii) halve the costs of data modifications, and (iv) reallocate less than 90\% of data when adding a node to the cluster. Importantly, we can calculate the corresponding ILP-based heuristic solutions within a few seconds. Finally, we demonstrate that the ideas of our ILP-based heuristics are also applicable to the index selection problem.}, language = {en} }