@article{JaptokSchmitzFayyazetal.2015, author = {Japtok, Lukasz and Schmitz, Elisabeth I. and Fayyaz, Susann and Kr{\"a}mer, Stephanie and Hsu, Leigh J. and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate counteracts insulin signaling in pancreatic beta-cells via the sphingosine 1-phosphate receptor subtype 2}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {29}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {8}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.14-263194}, pages = {3357 -- 3369}, year = {2015}, abstract = {Glucolipotoxic stress has been identified as a key player in the progression of pancreatic beta-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic beta-cells but also regulate beta-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in beta-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P(2)) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P(2) axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by beta-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P(2), the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued beta-cell damage clearly indicating an important role of the S1P(2) in beta-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish beta-cell dysfunction and the development of T2D.}, language = {en} } @article{FayyazJaptokSchumacheretal.2017, author = {Fayyaz, Susann and Japtok, Lukasz and Schumacher, Fabian and Wigger, Dominik and Schulz, Tim Julius and Haubold, Kathrin and Gulbins, Erich and V{\"o}ller, Heinz and Kleuser, Burkhard}, title = {Lysophosphatidic acid inhibits insulin signaling in primary rat hepatocytes via the LPA(3) receptor subtype and is increased in obesity}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {43}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000480470}, pages = {445 -- 456}, year = {2017}, abstract = {Background/Aims: Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). Methods: The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Results: Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). Conclusion: LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity.}, language = {en} } @misc{FayyazJaptokKleuser2014, author = {Fayyaz, Susann and Japtok, Lukasz and Kleuser, Burkhard}, title = {Divergent role of sphingosine 1-Phosphate on insulin resistance}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {34}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000362990}, pages = {134 -- 147}, year = {2014}, abstract = {Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic beta-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.}, language = {en} } @article{FayyazHenkelJaptoketal.2014, author = {Fayyaz, Susann and Henkel, Janin and Japtok, Lukasz and Kr{\"a}mer, Stephanie and Damm, Georg and Seehofer, Daniel and P{\"u}schel, Gerhard Paul and Kleuser, Burkhard}, title = {Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {57}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-013-3123-6}, pages = {373 -- 382}, year = {2014}, abstract = {Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.}, language = {en} } @phdthesis{Fayyaz2015, author = {Fayyaz, Susann}, title = {Bedeutung bioaktiver Lipidderivate bei der Entstehung hepatischer Insulinresistenz}, pages = {173}, year = {2015}, language = {de} } @article{AlFadelFayyazJaptoketal.2016, author = {Al Fadel, Frdoos and Fayyaz, Susann and Japtok, Lukasz and Kleuser, Burkhard}, title = {Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {40}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000453213}, pages = {1637 -- 1645}, year = {2016}, abstract = {Background/Aims: Ectopic lipid accumulation in hepatocytes has been identified as a risk factor for the progression of liver fibrosis and is strongly associated with obesity. In particular, the saturated fatty acid palmitate is involved in initiation of liver fibrosis via formation of secondary metabolites by hepatocytes that in turn activate hepatic stellate cells (HSCs) in a paracrine manner Methods: a-smooth muscle actin-expression (alpha-SMA) as a marker of liver fibrosis was investigated via western blot analysis and immunofluorescence microscopy in HSCs (LX-2). Sphingolipid metabolism and the generation of the bioactive secondary metabolite sphingosine I-phosphate (SIP) in response to palmitate were analyzed by LC-MS/MS in hepatocytes (HepG2). To identify the molecular mechanism involved in the progression of liver fibrosis real-time PCR analysis and pharmacological modulation of SIP receptors were performed. Results: Palmitate oversupply increased intra- and extracellular SIP-concentrations in hepatocytes. Conditioned medium from HepG2 cells initiated fibrosis by enhancing alpha-SMA-expression in LX-2 in a S1P-dependent manner In accordance, fibrotic response in the presence of SIP was also observed in HSCs. Pharmacological inhibition of SIP receptors demonstrated that S1P(3) is the crucial receptor subtype involved in this process. Conclusion: SIP is synthesized in hepatocytes in response to palmitate and released into the extracellular environment leading to an activation of HSCs via the S1P(3) receptor (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} }