@article{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Antioxidants}, volume = {10}, journal = {Antioxidants}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-3921}, doi = {10.3390/antiox10050711}, pages = {22}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} } @article{TentschertDraudeJungnickeletal.2013, author = {Tentschert, J. and Draude, F. and Jungnickel, H. and Haase, A. and Mantion, Alexandre and Galla, S. and Thuenemann, Andreas F. and Taubert, Andreas and Luch, A. and Arlinghaus, H. F.}, title = {TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {45}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5155}, pages = {483 -- 485}, year = {2013}, abstract = {Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained.}, language = {en} } @article{SchaeferKakularamReischetal.2022, author = {Sch{\"a}fer, Marj{\"a}nn Helena and Kakularam, Kumar Reddy and Reisch, Florian and Rothe, Michael and Stehling, Sabine and Heydeck, Dagmar and P{\"u}schel, Gerhard Paul and Kuhn, Hartmut}, title = {Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, edition = {6}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2227-9059}, doi = {10.3390/biomedicines10061379}, pages = {1 -- 22}, year = {2022}, abstract = {Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.}, language = {en} } @article{RohnRaschkeAschneretal.2019, author = {Rohn, Isabelle and Raschke, Stefanie and Aschner, Michael and Tuck, Simon and Kuehnelt, Doris and Kipp, Anna Patricia and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {63}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201801304}, pages = {9}, year = {2019}, abstract = {ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.}, language = {en} } @article{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222010905}, pages = {16}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @misc{KrupkovaSmoldersWuertzKozaketal.2018, author = {Krupkova, Olga and Smolders, Lucas and W{\"u}rtz-Kozak, Karin and Cook, James and Pozzi, Antonio}, title = {The pathobiology of the meniscus}, series = {Frontiers in veterinary science}, volume = {5}, journal = {Frontiers in veterinary science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2297-1769}, doi = {10.3389/fvets.2018.00073}, pages = {15}, year = {2018}, abstract = {Serious knee pain and related disability have an annual prevalence of approximately 25\% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making.}, language = {en} } @article{KobelHoellerGleyJochinkeetal.2018, author = {Kobel-H{\"o}ller, Konstanze and Gley, Kevin and Jochinke, Janina and Heider, Kristina and Fritsch, Verena Nadin and Ha Viet Duc Nguyen, and Lischke, Timo and Radek, Renate and Baumgrass, Ria and Mutzel, Rupert and Thewes, Sascha}, title = {Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response}, series = {Protist}, volume = {169}, journal = {Protist}, number = {4}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1434-4610}, doi = {10.1016/j.protis.2018.04.004}, pages = {584 -- 602}, year = {2018}, abstract = {Calcineurin is involved in development and cell differentiation of the social amoeba Dictyostelium discoideum. However, since knockouts of the calcineurin-encoding genes are not possible in D. discoideum it is assumed that the phosphatase also plays a crucial role during vegetative growth of the amoebae. Therefore, we investigated the role of calcineurin during vegetative growth in D. discoideum. RNAi-silenced calcineurin mutants showed cellular alterations with an abnormal morphology of mitochondria and had increased content of mitochondrial DNA (mtDNA). In contrast, mitochondria showed no substantial functional impairment. Calcineurin-silencing led to altered expression of calcium-regulated genes as well as mitochondrially-encoded genes. Furthermore, genes related to oxidative stress were higher expressed in the mutants, which correlated to an increased resistance towards reactive oxygen species (ROS). Most of the changes observed during vegetative growth were not seen after starvation of the calcineurin mutants. We show that impairment of calcineurin led to many subtle, but in the sum crucial cellular alterations in vegetative D. discoideum cells. As these alterations were not observed after starvation we propose a dual role for calcineurin during growth and development. Our results imply that calcineurin is one player in the mutual interplay between mitochondria and ROS during vegetative growth.}, language = {en} } @article{IjomoneIroegbuMorcilloetal.2022, author = {Ijomone, Omamuyovwi M. and Iroegbu, Joy D. and Morcillo, Patricia and Ayodele, Akinyemi J. and Ijomone, Olayemi K. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure}, series = {Environmental toxicology}, volume = {37}, journal = {Environmental toxicology}, number = {9}, publisher = {Wiley}, address = {New York, NY}, issn = {1520-4081}, doi = {10.1002/tox.23583}, pages = {2167 -- 2177}, year = {2022}, abstract = {Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.}, language = {en} } @misc{HocherZeng2018, author = {Hocher, Berthold and Zeng, Shufei}, title = {Clear the fog around parathyroid hormone assays}, series = {Clinical journal of the American Society of Nephrology}, volume = {13}, journal = {Clinical journal of the American Society of Nephrology}, number = {4}, publisher = {American Society of Nephrology}, address = {Washington}, issn = {1555-9041}, doi = {10.2215/CJN.01730218}, pages = {524 -- 526}, year = {2018}, language = {en} } @article{HenningKochlikKuschetal.2022, author = {Henning, Thorsten and Kochlik, Bastian Max and Kusch, Paula and Strauss, Matthias and Juric, Viktorija and Pignitter, Marc and Marusch, Frank and Grune, Tilman and Weber, Daniela}, title = {Pre-Operative assessment of micronutrients, amino acids, phospholipids and oxidative stress in bariatric surgery candidates}, series = {Antioxidants : open access journal}, volume = {11}, journal = {Antioxidants : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2076-3921}, doi = {10.3390/antiox11040774}, pages = {13}, year = {2022}, abstract = {Obesity has been linked to lower concentrations of fat-soluble micronutrients and higher concentrations of oxidative stress markers as well as an altered metabolism of branched chain amino acids and phospholipids. In the context of morbid obesity, the aim of this study was to investigate whether and to which extent plasma status of micronutrients, amino acids, phospholipids and oxidative stress differs between morbidly obese (n = 23) and non-obese patients (n = 13). In addition to plasma, malondialdehyde, retinol, cholesterol and triglycerides were assessed in visceral and subcutaneous adipose tissue in both groups. Plasma gamma-tocopherol was significantly lower (p < 0.011) in the obese group while other fat-soluble micronutrients showed no statistically significant differences between both groups. Branched-chain amino acids (all p < 0.008) and lysine (p < 0.006) were significantly higher in morbidly obese patients compared to the control group. Malondialdehyde concentrations in both visceral (p < 0.016) and subcutaneous (p < 0.002) adipose tissue were significantly higher in the morbidly obese group while plasma markers of oxidative stress showed no significant differences between both groups. Significantly lower plasma concentrations of phosphatidylcholine, phosphatidylethanolamine, lyso-phosphatidylethanolamine (all p < 0.05) and their corresponding ether-linked analogs were observed, which were all reduced in obese participants compared to the control group. Pre-operative assessment of micronutrients in patients undergoing bariatric surgery is recommended for early identification of patients who might be at higher risk to develop a severe micronutrient deficiency post-surgery. Assessment of plasma BCAAs and phospholipids in obese patients might help to differentiate between metabolic healthy patients and those with metabolic disorders.}, language = {en} }