@misc{ZemellaThoringHoffmeisteretal.2018, author = {Zemella, Anne and Thoring, Lena and Hoffmeister, Christian and Šamal{\´i}kov{\´a}, M{\´a}ria and Ehren, Patricia and W{\"u}stenhagen, Doreen Anja and Kubick, Stefan}, title = {Cell-free protein synthesis as a novel tool for directed glycoengineering of active erythropoietin}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {824}, doi = {10.25932/publishup-42701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427017}, pages = {14}, year = {2018}, abstract = {As one of the most complex post-translational modification, glycosylation is widely involved in cell adhesion, cell proliferation and immune response. Nevertheless glycoproteins with an identical polypeptide backbone mostly differ in their glycosylation patterns. Due to this heterogeneity, the mapping of different glycosylation patterns to their associated function is nearly impossible. In the last years, glycoengineering tools including cell line engineering, chemoenzymatic remodeling and site-specific glycosylation have attracted increasing interest. The therapeutic hormone erythropoietin (EPO) has been investigated in particular by various groups to establish a production process resulting in a defined glycosylation pattern. However commercially available recombinant human EPO shows batch-to-batch variations in its glycoforms. Therefore we present an alternative method for the synthesis of active glycosylated EPO with an engineered O-glycosylation site by combining eukaryotic cell-free protein synthesis and site-directed incorporation of non-canonical amino acids with subsequent chemoselective modifications.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @misc{Rogol2021, author = {Rogol, Alan D.}, title = {Settings Perspective}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.2}, pages = {1 -- 2}, year = {2021}, language = {en} } @article{RibeiroAraujoFernieetal.2012, author = {Ribeiro, Dimas M. and Araujo, Wagner L. and Fernie, Alisdair R. and Schippers, Jos H. M. and M{\"u}ller-R{\"o}ber, Bernd}, title = {Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis}, series = {Journal of experimental botany}, volume = {63}, journal = {Journal of experimental botany}, number = {7}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/err463}, pages = {2769 -- 2786}, year = {2012}, abstract = {Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA(3)) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA(3). However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA(3) alone, or PAC plus GA(3). Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism.}, language = {en} } @phdthesis{Pietzker2003, author = {Pietzker, Christian}, title = {In-situ Wachstumsuntersuchungen beim reaktiven Anlassen von Cu, In Schichten in elementarem Schwefel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001219}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In dieser Arbeit wurde das reaktive Anlassen von d{\"u}nnen Kupfer-Indium-Schichten in elementarem Schwefel mittels energiedispersiver R{\"o}ntgenbeugung untersucht. Durch die simultane Aufnahme der R{\"o}ntgenspektren und der Messung der diffusen Reflexion von Laserlicht der Wellenl{\"a}nge 635 nm an der Oberfl{\"a}che der Probe w{\"a}hrend des Schichtwachstums von CuInS2 konnte eine Methode zur Prozesskontrolle f{\"u}r ein Herstellungsverfahren von CuInS2 etabliert werden. Die Bildung von CuInS2 aus Kupfer-Indium-Vorl{\"a}uferschichten wird dominiert von Umwandlungen der intermetallischen Phasen. CuInS2 w{\"a}chst innerhalb der Aufheizperiode ab einer Temperatur von ca. 200°C aus der Phase Cu11In9. Jedoch zerf{\"a}llt letztere metallische Phase in Cu16In9 und fl{\"u}ssiges Indium bei einer Temperatur von ca. 310°C. Das fl{\"u}ssige Indium reagiert im Falle von Kupferarmut mit dem Schwefel und f{\"u}hrt zu einem zus{\"a}tzlichen Reaktionspfad {\"u}ber InS zu CuIn5S8. Unter Pr{\"a}parationsbedingungen mit Kupfer{\"u}berschuss wird das Indium in einer intermetallischen Phase gebunden.Erstmals konnte die Phase Digenite bei Temperaturen {\"u}ber 240°C beobachtet werden. Beim Abk{\"u}hlen auf Raumtemperatur wandelt sich diese Phase unter dem Verbrauch von Schwefel in Covellite um.F{\"u}r Proben mit Kupfer{\"u}berschuss konnte eine Wachstumskinetik proportional zur Temperatur beobachtet werden. Dieses Verhalten wurde durch eine stress-induzierte Diffusion als dominierenden Reaktionsmechanismus interpretiert. Dabei werden w{\"a}hrend der Bildung von CuInS2 durch unterschiedliche Ausdehnungen der metallischen und sulfidischen Schichten eine Spannung in der CuInS2-Schicht induziert, die nach {\"U}berschreiten einer Grenzspannung zu Rissen in der CuInS2-Schicht f{\"u}hrt. Entlang dieser Risse findet ein schneller Transport der Metalle zur Oberfl{\"a}che, wo diese mit dem Schwefel reagieren k{\"o}nnen, statt. Die Risse heilen durch die Bildung neuen Sulfids wieder aus.}, language = {de} } @article{PetrovSchippersBeninaetal.2013, author = {Petrov, Veselin and Schippers, Jos and Benina, Maria and Minkov, Ivan and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {In search for new players of the oxidative stress network by phenotyping an Arabidopsis T-DNA mutant collection on reactive oxygen species-eliciting chemicals}, series = {Plant omics}, volume = {6}, journal = {Plant omics}, number = {1}, publisher = {Southern Cross Publ.}, address = {Lismore}, issn = {1836-0661}, pages = {46 -- 54}, year = {2013}, abstract = {The ability of some chemical compounds to cause oxidative stress offers a fast and convenient way to study the responses of plants to reactive oxygen species (ROS). In order to unveil potential novel genetic players of the ROS-regulatory network, a population of similar to 2,000 randomly selected Arabidopsis thaliana T-DNA insertion mutants was screened for ROS sensitivity/resistance by growing seedlings on agar medium supplemented with stress-inducing concentrations of the superoxide-eliciting herbicide methyl viologen or the catalase inhibitor 3-amino-triazole. A semi-robotic setup was used to capture and analyze images of the chemically treated seedlings which helped interpret the screening results by providing quantitative information on seedling area and healthy-to-chlorotic tissue ratios for data verification. A ROS-related phenotype was confirmed in three of the initially selected 33 mutant candidates, which carry T-DNA insertions in genes encoding a Ring/Ubox superfamily protein, ABI5 binding protein 1 (AFP1), previously reported to be involved in ABA signaling, and a protein of unknown function, respectively. In addition, we identified six mutants, most of which have not been described yet, that are related to growth or chloroplast development and show defects in a ROS-independent manner. Thus, semi-automated image capturing and phenotyping applied on publically available T-DNA insertion collections adds a simple means for discovering novel mutants in complex physiological processes and identifying the genes involved.}, language = {en} } @article{OlasFichtnerApelt2020, author = {Olas, Justyna Jadwiga and Fichtner, Franziska and Apelt, Federico}, title = {All roads lead to growth}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz406}, pages = {11 -- 21}, year = {2020}, abstract = {Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.}, language = {en} } @article{LissoSchroederMuessig2013, author = {Lisso, Janina and Schr{\"o}der, Florian and M{\"u}ssig, Carsten}, title = {EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth}, series = {Frontiers in plant science}, volume = {4}, journal = {Frontiers in plant science}, number = {25}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2013.00219}, pages = {18}, year = {2013}, abstract = {Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wildtype. Trehalose feeding stimulated root growth and shoot biomass production of exoplants where as it inhibited growth of the wildtype. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses.}, language = {en} } @misc{Lenhard2012, author = {Lenhard, Michael}, title = {All's well that ends well}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {906}, issn = {1866-8372}, doi = {10.25932/publishup-43803}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438035}, pages = {9 -- 11}, year = {2012}, abstract = {The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion.}, language = {en} } @misc{JohnsonRammKappeletal.2015, author = {Johnson, Kim L. and Ramm, Sascha and Kappel, Christian and Ward, Sally and Leyser, Ottoline and Sakamoto, Tomoaki and Kurata, Tetsuya and Bevan, Michael W. and Lenhard, Michael}, title = {The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410245}, pages = {17}, year = {2015}, abstract = {Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways.}, language = {en} }