@misc{FranckeFoersterBrosinskyetal.2018, author = {Francke, Till and F{\"o}rster, Saskia and Brosinsky, Arlena and Sommerer, Erik and Lopez-Tarazon, Jose Andres and G{\"u}ntner, Andreas and Batalla Villanueva, Ramon J. and Bronstert, Axel}, title = {Water and sediment fluxes in Mediterranean mountainous regions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {547}, issn = {1866-8372}, doi = {10.25932/publishup-41915}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419150}, pages = {13}, year = {2018}, abstract = {A comprehensive hydro-sedimentological dataset for the Is{\´a}bena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Is{\´a}bena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Is{\´a}bena catchment (445 km 2 ) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Is{\´a}bena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments.}, language = {en} } @article{ZimmermannZimmermannTurneretal.2014, author = {Zimmermann, Beate and Zimmermann, Alexander and Turner, Benjamin L. and Francke, Till and Elsenbeer, Helmut}, title = {Connectivity of overland flow by drainage network expansion in a rain forest catchment}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2012WR012660}, pages = {1457 -- 1473}, year = {2014}, abstract = {Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.}, language = {en} }