@article{FerrariProostJanowskietal.2019, author = {Ferrari, Camilla and Proost, Sebastian and Janowski, Marcin Andrzej and Becker, J{\"o}rg and Nikoloski, Zoran and Bhattacharya, Debashish and Price, Dana and Tohge, Takayuki and Bar-Even, Arren and Fernie, Alisdair R. and Stitt, Mark and Mutwil, Marek}, title = {Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08703-2}, pages = {13}, year = {2019}, abstract = {Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes.}, language = {en} } @article{WatanabeTohgeBalazadehetal.2018, author = {Watanabe, Mutsumi and Tohge, Takayuki and Balazadeh, Salma and Erban, Alexander and Giavalisco, Patrick and Kopka, Joachim and Mueller-Roeber, Bernd and Fernie, Alisdair R. and Hoefgen, Rainer}, title = {Comprehensive Metabolomics Studies of Plant Developmental Senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_28}, pages = {339 -- 358}, year = {2018}, abstract = {Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies.}, language = {en} } @article{KamranfarXueTohgeetal.2018, author = {Kamranfar, Iman and Xue, Gang-Ping and Tohge, Takayuki and Sedaghatmehr, Mastoureh and Fernie, Alisdair R. and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence}, series = {New phytologist : international journal of plant science}, volume = {218}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.15127}, pages = {1543 -- 1557}, year = {2018}, abstract = {Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy.}, language = {en} } @article{WangTohgeIvakovetal.2015, author = {Wang, Ting and Tohge, Takayuki and Ivakov, Alexander and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Mutwil, Marek and Schippers, Jos H. M. and Persson, Staffan}, title = {Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00962}, pages = {1027 -- +}, year = {2015}, abstract = {Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance.}, language = {en} } @article{LotkowskaTohgeFernieetal.2015, author = {Lotkowska, Magda E. and Tohge, Takayuki and Fernie, Alisdair R. and Xue, Gang-Ping and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00605}, pages = {1862 -- 1880}, year = {2015}, abstract = {MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up-and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C) CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions.}, language = {en} } @misc{OmranianKleessenTohgeetal.2015, author = {Omranian, Nooshin and Kleessen, Sabrina and Tohge, Takayuki and Klie, Sebastian and Basler, Georg and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Differential metabolic and coexpression networks of plant metabolism}, series = {Trends in plant science}, volume = {20}, journal = {Trends in plant science}, number = {5}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2015.02.002}, pages = {266 -- 268}, year = {2015}, abstract = {Recent analyses have demonstrated that plant metabolic networks do not differ in their structural properties and that genes involved in basic metabolic processes show smaller coexpression than genes involved in specialized metabolism. By contrast, our analysis reveals differences in the structure of plant metabolic networks and patterns of coexpression for genes in (non)specialized metabolism. Here we caution that conclusions concerning the organization of plant metabolism based on network-driven analyses strongly depend on the computational approaches used.}, language = {en} } @article{AlseekhTohgeWendenbergetal.2015, author = {Alseekh, Saleh and Tohge, Takayuki and Wendenberg, Regina and Scossa, Federico and Omranian, Nooshin and Li, Jie and Kleessen, Sabrina and Giavalisco, Patrick and Pleban, Tzili and M{\"u}ller-R{\"o}ber, Bernd and Zamir, Dani and Nikoloski, Zoran and Fernie, Alisdair R.}, title = {Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato}, series = {The plant cell}, volume = {27}, journal = {The plant cell}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.114.132266}, pages = {485 -- 512}, year = {2015}, abstract = {A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism.}, language = {en} } @article{SchwahndeSouzaFernieetal.2014, author = {Schwahn, Kevin and de Souza, Leonardo Perez and Fernie, Alisdair R. and Tohge, Takayuki}, title = {Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade}, series = {Journal of integrative plant biology}, volume = {56}, journal = {Journal of integrative plant biology}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1672-9072}, doi = {10.1111/jipb.12274}, pages = {864 -- 875}, year = {2014}, abstract = {Steroidal glycoalkaloids (SGAs) are nitrogen-containing secondary metabolites of the Solanum species, which are known to have large chemical and bioactive diversity in nature. While recent effort and development on LC/MS techniques for SGA profiling have elucidated the main pathways of SGA metabolism in tomato, the problem of peak annotation still remains due to the vast diversity of chemical structure and similar on overlapping of chemical formula. Here we provide a case study of peak classification and annotation approach by integration of species and tissue specificities of SGA accumulation for provision of comprehensive pathways of SGA biosynthesis. In order to elucidate natural diversity of SGA biosynthesis, a total of 169 putative SGAs found in eight tomato accessions (Solanum lycopersicum, S. pimpinellifolium, S. cheesmaniae, S. chmielewskii, S. neorickii, S. peruvianum, S. habrochaites, S. pennellii) and four tissue types were used for correlation analysis. The results obtained in this study contribute annotation and classification of SGAs as well as detecting putative novel biosynthetic branch points. As such this represents a novel strategy for peak annotation for plant secondary metabolites.}, language = {en} } @article{GechevBeninaObataetal.2013, author = {Gechev, Tsanko S. and Benina, Maria and Obata, Toshihiro and Tohge, Takayuki and Neerakkal, Sujeeth and Minkov, Ivan and Hille, Jacques and Temanni, Mohamed-Ramzi and Marriott, Andrew S. and Bergstr{\"o}m, Ed and Thomas-Oates, Jane and Antonio, Carla and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M. and Fernie, Alisdair R. and Toneva, Valentina}, title = {Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis}, series = {Cellular and molecular life sciences}, volume = {70}, journal = {Cellular and molecular life sciences}, number = {4}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1155-6}, pages = {689 -- 709}, year = {2013}, abstract = {Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and gamma-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.}, language = {en} } @article{WatanabeBalazadehTohgeetal.2013, author = {Watanabe, Mutsumi and Balazadeh, Salma and Tohge, Takayuki and Erban, Alexander and Giavalisco, Patrick and Kopka, Joachim and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and H{\"o}fgen, Rainer}, title = {Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {162}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.113.217380}, pages = {1290 -- 1310}, year = {2013}, abstract = {Developmental senescence is a coordinated physiological process in plants and is critical for nutrient redistribution from senescing leaves to newly formed sink organs, including young leaves and developing seeds. Progress has been made concerning the genes involved and the regulatory networks controlling senescence. The resulting complex metabolome changes during senescence have not been investigated in detail yet. Therefore, we conducted a comprehensive profiling of metabolites, including pigments, lipids, sugars, amino acids, organic acids, nutrient ions, and secondary metabolites, and determined approximately 260 metabolites at distinct stages in leaves and siliques during senescence in Arabidopsis (Arabidopsis thaliana). This provided an extensive catalog of metabolites and their spatiotemporal cobehavior with progressing senescence. Comparison with silique data provides clues to source-sink relations. Furthermore, we analyzed the metabolite distribution within single leaves along the basipetal sink-source transition trajectory during senescence. Ceramides, lysolipids, aromatic amino acids, branched chain amino acids, and stress-induced amino acids accumulated, and an imbalance of asparagine/aspartate, glutamate/glutamine, and nutrient ions in the tip region of leaves was detected. Furthermore, the spatiotemporal distribution of tricarboxylic acid cycle intermediates was already changed in the presenescent leaves, and glucosinolates, raffinose, and galactinol accumulated in the base region of leaves with preceding senescence. These results are discussed in the context of current models of the metabolic shifts occurring during developmental and environmentally induced senescence. As senescence processes are correlated to crop yield, the metabolome data and the approach provided here can serve as a blueprint for the analysis of traits and conditions linking crop yield and senescence.}, language = {en} }