@article{FischerAndersSaalfrank2022, author = {Fischer, Eric Wolfgang and Anders, Janet and Saalfrank, Peter}, title = {Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {15}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0021-9606}, doi = {10.1063/5.0076434}, pages = {16}, year = {2022}, abstract = {It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrodinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency omega(c) is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.}, language = {en} } @article{FischerWertherBouaklineetal.2022, author = {Fischer, Eric Wolfgang and Werther, Michael and Bouakline, Foudhil and Grossmann, Frank and Saalfrank, Peter}, title = {Non-Markovian vibrational relaxation dynamics at surfaces}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {156}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {21}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0092836}, pages = {16}, year = {2022}, abstract = {Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as a model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2 x 1) surface, induced by a "bath " of more than 2000 phonon modes [Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [Fischer et al., J. Chem. Phys. 153, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done by solving a high-dimensional system-bath time-dependent Schrodinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with that of the recently developed coherent-state-based multi-Davydov-D2 Ansatz [Zhou et al., J. Chem. Phys. 143, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically "exact " solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation. Published under an exclusive license by AIP Publishing.}, language = {en} } @article{SchuermannTitovEbeletal.2022, author = {Sch{\"u}rmann, Robin and Titov, Evgenii and Ebel, Kenny and Kogikoski Junior, Sergio and Mostafa, Amr and Saalfrank, Peter and Milosavljević, Aleksandar R. and Bald, Ilko}, title = {The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles}, series = {Nanoscale Advances}, volume = {4}, journal = {Nanoscale Advances}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2516-0230}, doi = {10.1039/d1na00737h}, pages = {1599 -- 1607}, year = {2022}, abstract = {Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.}, language = {en} } @article{KuntzeViljakkaTitovetal.2022, author = {Kuntze, Kim and Viljakka, Jani and Titov, Evgenii and Ahmed, Zafar and Kalenius, Elina and Saalfrank, Peter and Priimagi, Arri}, title = {Towards low-energy-light-driven bistable photoswitches}, series = {Photochemical \& photobiological sciences / European Society for Photobiology}, volume = {21}, journal = {Photochemical \& photobiological sciences / European Society for Photobiology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00145-4}, pages = {159 -- 173}, year = {2022}, abstract = {Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.
[GRAPHICS]
.}, language = {en} } @misc{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1301}, issn = {1866-8372}, doi = {10.25932/publishup-57744}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577442}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{PenschkeEdlervonZanderBeqirajetal.2022, author = {Penschke, Christopher and Edler von Zander, Robert and Beqiraj, Alkit and Zehle, Anna and Jahn, Nicolas and Neumann, Rainer and Saalfrank, Peter}, title = {Water on porous, nitrogen-containing layered carbon materials}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, volume = {24}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00657j}, pages = {14709 -- 14726}, year = {2022}, abstract = {Porous, layered materials containing sp(2)-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these quasi two-dimensional materials (2DM) is water, and a photo(electro)chemical key reaction catalyzed by them, is water splitting into H-2 and O-2, with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) as half reactions. The complexity of some C/N-based 2DM in contact with water raises special needs for their theoretical modelling, which in turn is needed for rational design of C/N-based catalysts. In this work, three classes of C/N-containing porous 2DM with varying pore sizes and C/N ratios, namely graphitic carbon nitride (g-C3N4), C2N, and poly(heptazine imides) (PHI), are studied with various computational methods. We elucidate the performance of different models and model chemistries (the combination of electronic structure method and basis set) for water and water fragment adsorption in the low-coverage regime. Further, properties related to the photo(electro)chemical activity like electrochemical overpotentials, band gaps, and optical excitation energies are in our focus. Specifically, periodic models will be tested vs. cluster models, and density functional theory (DFT) vs. wavefunction theory (WFT). This work serves as a basis for a systematic study of trends for the photo(electro)chemical activity of C/N-containing layered materials as a function of water content, pore size and density.}, language = {en} } @article{FischerSaalfrank2022, author = {Fischer, Eric W. and Saalfrank, Peter}, title = {Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {157}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0098006}, pages = {13}, year = {2022}, abstract = {We study theoretically the quantum dynamics and spectroscopy of rovibrational polaritons formed in a model system composed of a single rovibrating diatomic molecule, which interacts with two degenerate, orthogonally polarized modes of an optical Fabry-Perot cavity. We employ an effective rovibrational Pauli-Fierz Hamiltonian in length gauge representation and identify three-state vibro-polaritonic conical intersections (VPCIs) between singly excited vibro-polaritonic states in a two-dimensional angular coordinate branching space. The lower and upper vibrational polaritons are of mixed light-matter hybrid character, whereas the intermediate state is purely photonic in nature. The VPCIs provide effective population transfer channels between singly excited vibrational polaritons, which manifest in rich interference patterns in rotational densities. Spectroscopically, three bright singly excited states are identified when an external infrared laser field couples to both a molecular and a cavity mode. The non-trivial VPCI topology manifests as pronounced multi-peak progression in the spectral region of the upper vibrational polariton, which is traced back to the emergence of rovibro-polaritonic light-matter hybrid states. Experimentally, ubiquitous spontaneous emission from cavity modes induces a dissipative reduction of intensity and peak broadening, which mainly influences the purely photonic intermediate state peak as well as the rovibro-polaritonic progression. Published under an exclusive license by AIP Publishing.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{YangGhoshRoeseretal.2022, author = {Yang, Jin and Ghosh, Samrat and Roeser, J{\´e}r{\^o}me and Acharjya, Amitava and Penschke, Christopher and Tsutsui, Yusuke and Rabeah, Jabor and Wang, Tianyi and Tameu, Simon Yves Djoko and Ye, Meng-Yang and Gr{\"u}neberg, Julia and Li, Shuang and Li, Changxia and Schomaecker, Reinhard and Van de Krol, Roel and Seki, Shu and Saalfrank, Peter and Thomas, Arne}, title = {Constitutional isomerism of the linkages in donor-acceptor covalent organic frameworks and its impact on photocatalysis}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {[London]}, issn = {2041-1723}, doi = {10.1038/s41467-022-33875-9}, pages = {10}, year = {2022}, abstract = {When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs.}, language = {en} } @article{ChoudhuryDeVineSinhaetal.2022, author = {Choudhury, Arnab and DeVine, Jessalyn A. A. and Sinha, Shreya and Lau, Jascha Alexander and Kandratsenka, Alexander and Schwarzer, Dirk and Saalfrank, Peter and Wodtke, Alec Michael}, title = {Condensed-phase isomerization through tunnelling gateways}, series = {Nature : the international weekly journal of science}, volume = {612}, journal = {Nature : the international weekly journal of science}, number = {7941}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-022-05451-0}, pages = {691 -- 695}, year = {2022}, abstract = {Quantum mechanical tunnelling describes transmission of matter waves through a barrier with height larger than the energy of the wave(1). Tunnelling becomes important when the de Broglie wavelength of the particle exceeds the barrier thickness; because wavelength increases with decreasing mass, lighter particles tunnel more efficiently than heavier ones. However, there exist examples in condensed-phase chemistry where increasing mass leads to increased tunnelling rates(2). In contrast to the textbook approach, which considers transitions between continuum states, condensed-phase reactions involve transitions between bound states of reactants and products. Here this conceptual distinction is highlighted by experimental measurements of isotopologue-specific tunnelling rates for CO rotational isomerization at an NaCl surface(3,4), showing nonmonotonic mass dependence. A quantum rate theory of isomerization is developed wherein transitions between sub-barrier reactant and product states occur through interaction with the environment. Tunnelling is fastest for specific pairs of states (gateways), the quantum mechanical details of which lead to enhanced cross-barrier coupling; the energies of these gateways arise nonsystematically, giving an erratic mass dependence. Gateways also accelerate ground-state isomerization, acting as leaky holes through the reaction barrier. This simple model provides a way to account for tunnelling in condensed-phase chemistry, and indicates that heavy-atom tunnelling may be more important than typically assumed.}, language = {en} }