@misc{BaslerFernieNikoloski2018, author = {Basler, Georg and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Advances in metabolic flux analysis toward genome-scale profiling of higher organisms}, series = {Bioscience reports : communications and reviews in molecular and cellular biology}, volume = {38}, journal = {Bioscience reports : communications and reviews in molecular and cellular biology}, publisher = {Portland Press (London)}, address = {London}, issn = {0144-8463}, doi = {10.1042/BSR20170224}, pages = {11}, year = {2018}, abstract = {Methodological and technological advances have recently paved the way for metabolic flux profiling in higher organisms, like plants. However, in comparison with omics technologies, flux profiling has yet to provide comprehensive differential flux maps at a genome-scale and in different cell types, tissues, and organs. Here we highlight the recent advances in technologies to gather metabolic labeling patterns and flux profiling approaches. We provide an opinion of how recent local flux profiling approaches can be used in conjunction with the constraint-based modeling framework to arrive at genome-scale flux maps. In addition, we point at approaches which use metabolomics data without introduction of label to predict either non-steady state fluxes in a time-series experiment or flux changes in different experimental scenarios. The combination of these developments allows an experimentally feasible approach for flux-based large-scale systems biology studies.}, language = {en} } @misc{KoehlBaslerLuedemannetal.2008, author = {K{\"o}hl, Karin I. and Basler, Georg and L{\"u}demann, Alexander and Selbig, Joachim and Walther, Dirk}, title = {A plant resource and experiment management system based on the Golm Plant Database as a basic tool for omics research}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {830}, doi = {10.25932/publishup-42759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427595}, pages = {13}, year = {2008}, abstract = {Background: For omics experiments, detailed characterisation of experimental material with respect to its genetic features, its cultivation history and its treatment history is a requirement for analyses by bioinformatics tools and for publication needs. Furthermore, meta-analysis of several experiments in systems biology based approaches make it necessary to store this information in a standardised manner, preferentially in relational databases. In the Golm Plant Database System, we devised a data management system based on a classical Laboratory Information Management System combined with web-based user interfaces for data entry and retrieval to collect this information in an academic environment. Results: The database system contains modules representing the genetic features of the germplasm, the experimental conditions and the sampling details. In the germplasm module, genetically identical lines of biological material are generated by defined workflows, starting with the import workflow, followed by further workflows like genetic modification (transformation), vegetative or sexual reproduction. The latter workflows link lines and thus create pedigrees. For experiments, plant objects are generated from plant lines and united in so-called cultures, to which the cultivation conditions are linked. Materials and methods for each cultivation step are stored in a separate ACCESS database of the plant cultivation unit. For all cultures and thus every plant object, each cultivation site and the culture's arrival time at a site are logged by a barcode-scanner based system. Thus, for each plant object, all site-related parameters, e. g. automatically logged climate data, are available. These life history data and genetic information for the plant objects are linked to analytical results by the sampling module, which links sample components to plant object identifiers. This workflow uses controlled vocabulary for organs and treatments. Unique names generated by the system and barcode labels facilitate identification and management of the material. Web pages are provided as user interfaces to facilitate maintaining the system in an environment with many desktop computers and a rapidly changing user community. Web based search tools are the basis for joint use of the material by all researchers of the institute. Conclusion: The Golm Plant Database system, which is based on a relational database, collects the genetic and environmental information on plant material during its production or experimental use at the Max-Planck-Institute of Molecular Plant Physiology. It thus provides information according to the MIAME standard for the component 'Sample' in a highly standardised format. The Plant Database system thus facilitates collaborative work and allows efficient queries in data analysis for systems biology research.}, language = {en} } @misc{OmranianKleessenTohgeetal.2015, author = {Omranian, Nooshin and Kleessen, Sabrina and Tohge, Takayuki and Klie, Sebastian and Basler, Georg and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Differential metabolic and coexpression networks of plant metabolism}, series = {Trends in plant science}, volume = {20}, journal = {Trends in plant science}, number = {5}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2015.02.002}, pages = {266 -- 268}, year = {2015}, abstract = {Recent analyses have demonstrated that plant metabolic networks do not differ in their structural properties and that genes involved in basic metabolic processes show smaller coexpression than genes involved in specialized metabolism. By contrast, our analysis reveals differences in the structure of plant metabolic networks and patterns of coexpression for genes in (non)specialized metabolism. Here we caution that conclusions concerning the organization of plant metabolism based on network-driven analyses strongly depend on the computational approaches used.}, language = {en} } @article{BaslerEbenhoehSelbigetal.2011, author = {Basler, Georg and Ebenhoeh, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Mass-balanced randomization of metabolic networks}, series = {Bioinformatics}, volume = {27}, journal = {Bioinformatics}, number = {10}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btr145}, pages = {1397 -- 1403}, year = {2011}, abstract = {Motivation: Network-centered studies in systems biology attempt to integrate the topological properties of biological networks with experimental data in order to make predictions and posit hypotheses. For any topology-based prediction, it is necessary to first assess the significance of the analyzed property in a biologically meaningful context. Therefore, devising network null models, carefully tailored to the topological and biochemical constraints imposed on the network, remains an important computational problem. Results: We first review the shortcomings of the existing generic sampling scheme-switch randomization-and explain its unsuitability for application to metabolic networks. We then devise a novel polynomial-time algorithm for randomizing metabolic networks under the (bio)chemical constraint of mass balance. The tractability of our method follows from the concept of mass equivalence classes, defined on the representation of compounds in the vector space over chemical elements. We finally demonstrate the uniformity of the proposed method on seven genome-scale metabolic networks, and empirically validate the theoretical findings. The proposed method allows a biologically meaningful estimation of significance for metabolic network properties.}, language = {en} } @article{BaslerNikoloski2011, author = {Basler, Georg and Nikoloski, Zoran}, title = {JMassBalance - mass-balanced randomization and analysis of metabolic networks}, series = {Bioinformatics}, volume = {27}, journal = {Bioinformatics}, number = {19}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btr448}, pages = {2761 -- 2762}, year = {2011}, abstract = {Analysis of biological networks requires assessing the statistical significance of network-based predictions by using a realistic null model. However, the existing network null model, switch randomization, is unsuitable for metabolic networks, as it does not include physical constraints and generates unrealistic reactions. We present JMassBalance, a tool for mass-balanced randomization and analysis of metabolic networks. The tool allows efficient generation of large sets of randomized networks under the physical constraint of mass balance. In addition, various structural properties of the original and randomized networks can be calculated, facilitating the identification of the salient properties of metabolic networks with a biologically meaningful null model.}, language = {en} } @article{BaslerGrimbsEbenhoehetal.2012, author = {Basler, Georg and Grimbs, Sergio and Ebenh{\"o}h, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Evolutionary significance of metabolic network properties}, series = {Interface : journal of the Royal Society}, volume = {9}, journal = {Interface : journal of the Royal Society}, number = {71}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2011.0652}, pages = {1168 -- 1176}, year = {2012}, abstract = {Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, such as small average path length, large clustering coefficient, heavy-tail degree distribution and hierarchical organization, viewed as requirements for efficient and robust system architectures. However, for biological networks, it is unclear to what extent these properties reflect the evolutionary history of the represented systems. Here, we show that the salient structural properties of six metabolic networks from all kingdoms of life may be inherently related to the evolution and functional organization of metabolism by employing network randomization under mass balance constraints. Contrary to the results from the common Markov-chain switching algorithm, our findings suggest the evolutionary importance of the small-world hypothesis as a fundamental design principle of complex networks. The approach may help us to determine the biologically meaningful properties that result from evolutionary pressure imposed on metabolism, such as the global impact of local reaction knockouts. Moreover, the approach can be applied to test to what extent novel structural properties can be used to draw biologically meaningful hypothesis or predictions from structure alone.}, language = {en} } @article{BaslerGrimbsNikoloski2012, author = {Basler, Georg and Grimbs, Sergio and Nikoloski, Zoran}, title = {Optimizing metabolic pathways by screening for feasible synthetic reactions}, series = {Biosystems : journal of biological and information processing sciences}, volume = {109}, journal = {Biosystems : journal of biological and information processing sciences}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2012.04.007}, pages = {186 -- 191}, year = {2012}, abstract = {Background: Reconstruction of genome-scale metabolic networks has resulted in models capable of reproducing experimentally observed biomass yield/growth rates and predicting the effect of alterations in metabolism for biotechnological applications. The existing studies rely on modifying the metabolic network of an investigated organism by removing or inserting reactions taken either from evolutionary similar organisms or from databases of biochemical reactions (e.g., KEGG). A potential disadvantage of these knowledge-driven approaches is that the result is biased towards known reactions, as such approaches do not account for the possibility of including novel enzymes, together with the reactions they catalyze. Results: Here, we explore the alternative of increasing biomass yield in three model organisms, namely Bacillus subtilis, Escherichia coil, and Hordeum vulgare, by applying small, chemically feasible network modifications. We use the predicted and experimentally confirmed growth rates of the wild-type networks as reference values and determine the effect of inserting mass-balanced, thermodynamically feasible reactions on predictions of growth rate by using flux balance analysis. Conclusions: While many replacements of existing reactions naturally lead to a decrease or complete loss of biomass production ability, in all three investigated organisms we find feasible modifications which facilitate a significant increase in this biological function. We focus on modifications with feasible chemical properties and a significant increase in biomass yield. The results demonstrate that small modifications are sufficient to substantially alter biomass yield in the three organisms. The method can be used to predict the effect of targeted modifications on the yield of any set of metabolites (e.g., ethanol), thus providing a computational framework for synthetic metabolic engineering.}, language = {en} } @article{LarhlimiBaslerGrimbsetal.2012, author = {Larhlimi, Abdelhalim and Basler, Georg and Grimbs, Sergio and Selbig, Joachim and Nikoloski, Zoran}, title = {Stoichiometric capacitance reveals the theoretical capabilities of metabolic networks}, series = {Bioinformatics}, volume = {28}, journal = {Bioinformatics}, number = {18}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/bts381}, pages = {I502 -- I508}, year = {2012}, abstract = {Motivation: Metabolic engineering aims at modulating the capabilities of metabolic networks by changing the activity of biochemical reactions. The existing constraint-based approaches for metabolic engineering have proven useful, but are limited only to reactions catalogued in various pathway databases. Results: We consider the alternative of designing synthetic strategies which can be used not only to characterize the maximum theoretically possible product yield but also to engineer networks with optimal conversion capability by using a suitable biochemically feasible reaction called 'stoichiometric capacitance'. In addition, we provide a theoretical solution for decomposing a given stoichiometric capacitance over a set of known enzymatic reactions. We determine the stoichiometric capacitance for genome-scale metabolic networks of 10 organisms from different kingdoms of life and examine its implications for the alterations in flux variability patterns. Our empirical findings suggest that the theoretical capacity of metabolic networks comes at a cost of dramatic system's changes.}, language = {en} } @phdthesis{Basler2012, author = {Basler, Georg}, title = {Mass-balanced randomization : a significance measure for metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62037}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, including small average path length, large clustering coefficient, heavy-tail degree distribution, and hierarchical organization, viewed as requirements for efficient and robust system architectures. Existing studies estimate the significance of network properties using a generic randomization scheme - a Markov-chain switching algorithm - which generates unrealistic reactions in metabolic networks, as it does not account for the physical principles underlying metabolism. Therefore, it is unclear whether the properties identified with this generic approach are related to the functions of metabolic networks. Within this doctoral thesis, I have developed an algorithm for mass-balanced randomization of metabolic networks, which runs in polynomial time and samples networks almost uniformly at random. The properties of biological systems result from two fundamental origins: ubiquitous physical principles and a complex history of evolutionary pressure. The latter determines the cellular functions and abilities required for an organism's survival. Consequently, the functionally important properties of biological systems result from evolutionary pressure. By employing randomization under physical constraints, the salient structural properties, i.e., the smallworld property, degree distributions, and biosynthetic capabilities of six metabolic networks from all kingdoms of life are shown to be independent of physical constraints, and thus likely to be related to evolution and functional organization of metabolism. This stands in stark contrast to the results obtained from the commonly applied switching algorithm. In addition, a novel network property is devised to quantify the importance of reactions by simulating the impact of their knockout. The relevance of the identified reactions is verified by the findings of existing experimental studies demonstrating the severity of the respective knockouts. The results suggest that the novel property may be used to determine the reactions important for viability of organisms. Next, the algorithm is employed to analyze the dependence between mass balance and thermodynamic properties of Escherichia coli metabolism. The thermodynamic landscape in the vicinity of the metabolic network reveals two regimes of randomized networks: those with thermodynamically favorable reactions, similar to the original network, and those with less favorable reactions. The results suggest that there is an intrinsic dependency between thermodynamic favorability and evolutionary optimization. The method is further extended to optimizing metabolic pathways by introducing novel chemically feasibly reactions. The results suggest that, in three organisms of biotechnological importance, introduction of the identified reactions may allow for optimizing their growth. The approach is general and allows identifying chemical reactions which modulate the performance with respect to any given objective function, such as the production of valuable compounds or the targeted suppression of pathway activity. These theoretical developments can find applications in metabolic engineering or disease treatment. The developed randomization method proposes a novel approach to measuring the significance of biological network properties, and establishes a connection between large-scale approaches and biological function. The results may provide important insights into the functional principles of metabolic networks, and open up new possibilities for their engineering.}, language = {en} }