@book{Foehlisch2010, author = {F{\"o}hlisch, Alexander}, title = {Phasen{\"u}berg{\"a}nge und Ultrakurzzeitdynamik : Antrittsvorlesung 2010-05-12}, publisher = {Univ.-Bibl.}, address = {Potsdam}, year = {2010}, abstract = {F{\"o}hlisch wird in seinem Vortrag die großen Zukunftsthemen der Mensch streifen: Energie, Umwelt und Struktur der Materie. Die Komplexit{\"a}t ihrer elementaren Prozesse erfordert die komplement{\"a}re Betrachtung der damit verbundene Dimensionen von Energie, Zeit und Raum. Dies l{\"a}sst sich inzwischen mit Synchrotronstrahlungsquellen in gr{\"o}ßter Pr{\"a}ision darstellen.}, language = {de} } @article{HenniesPietzschBerglundetal.2010, author = {Hennies, Franz and Pietzsch, Annette and Berglund, Martin and F{\"o}hlisch, Alexander and Schmitt, Thorsten and Strocov, Vladimir and Karlsson, Hans O. and Andersson, Joakim and Rubensson, Jan-Erik}, title = {Resonant inelastic scattering spectra of free molecules with vibrational resolution}, issn = {0031-9007}, doi = {10.1103/Physrevlett.104.193002}, year = {2010}, abstract = {Inelastic x-ray scattering spectra excited at the 1s(-1) pi* resonance of gas phase O-2 have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B' (3) Pi(g) final state is controlled.}, language = {en} } @article{BeyeFoehlisch2011, author = {Beye, Martin and F{\"o}hlisch, Alexander}, title = {A soft X-ray approach to electron-phonon interactions beyond the Born-Oppenheimer approximation}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {184}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {3-6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2010.12.032}, pages = {313 -- 317}, year = {2011}, abstract = {With modern soft X-ray methods, the whole field of electron-phonon interactions becomes accessible directly in the ultrafast time domain with ultrashort pulsed X-ray sources, as well as in the energy domain through modern highly resolving spectrometers. The well-known core-hole clock approach plays an intermediate role, resolving energetic and temporal features at the same time. In this perspective paper, we review several experiments to illustrate the modern advances in the selective study of electron-phonon interactions as fundamentally determining ingredients for materials properties. We present the different complementary approaches that can be taken with soft X-ray methods to conquer this field beyond the Born-Oppenheimer approximation.}, language = {en} } @article{SunHenniesPietzschetal.2011, author = {Sun, Y. -P. and Hennies, Franz and Pietzsch, Annette and Kennedy, B. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Berglund, Martin and Rubensson, Jan-Erik and Aidas, K. and Gel'mukhanov, F. and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Intramolecular soft modes and intermolecular interactions in liquid acetone}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.132202}, pages = {4}, year = {2011}, abstract = {Resonant inelastic x-ray scattering spectra excited at the O1s(-1)pi* resonance of liquid acetone are presented. Scattering to the electronic ground state shows a resolved vibrational progression where the dominant contribution is due to the C-O stretching mode, thus demonstrating a unique sensitivity of the method to the local potential energy surface in complex molecular systems. For scattering to electronically excited states, soft vibrational modes and, to a smaller extent, intermolecular interactions give a broadening, which blurs the vibrational fine structure. It is predicted that environmental broadening is dominant in aqueous acetone.}, language = {en} } @article{PietzschSunHenniesetal.2011, author = {Pietzsch, Annette and Sun, Y. -P. and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Rubensson, Jan-Erik and Gel'mukhanov, F.}, title = {Spatial quantum beats in vibrational resonant inelastic soft X-ray scattering at dissociating states in oxygen}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.153004}, pages = {4}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O-2 show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.}, language = {en} } @article{ArhammarPietzschBocketal.2011, author = {Arhammar, C. and Pietzsch, Annette and Bock, Nicolas and Holmstroem, Erik and Araujo, C. Moyses and Grasjo, Johan and Zhao, Shuxi and Green, Sara and Peery, T. and Hennies, Franz and Amerioun, Shahrad and F{\"o}hlisch, Alexander and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and Niklasson, Gunnar A. and Wallace, Duane C. and Rubensson, Jan-Erik and Johansson, Borje and Ahuja, Rajeev C.}, title = {Unveiling the complex electronic structure of amorphous metal oxides}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {16}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1019698108}, pages = {6355 -- 6360}, year = {2011}, abstract = {Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.}, language = {en} } @article{SunPietzschHenniesetal.2011, author = {Sun, Y-P and Pietzsch, Annette and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Gel'mukhanov, F. and Rubensson, Jan-Erik}, title = {Internal symmetry and selection rules in resonant inelastic soft x-ray scattering}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {44}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {16}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/0953-4075/44/16/161002}, pages = {5}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering spectra excited at the dissociative 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O(2) are presented and discussed in terms of state-of-the-art molecular theory. A new selection rule due to internal spin coupling is established, facilitating a deep analysis of the valence excited final states. Furthermore, it is found that a commonly accepted symmetry selection rule due to orbital parity breaks down, as the core hole and excited electron swap parity, thereby opening the symmetry forbidden 3 sigma(g) decay channel.}, language = {en} } @article{PontiusKachelSchuesslerLangeheineetal.2011, author = {Pontius, N. and Kachel, T. and Sch{\"u}ssler-Langeheine, C. and Schlotter, W. F. and Beye, Martin and Sorgenfrei, Nomi and Chang, C. F. and F{\"o}hlisch, Alexander and Wurth, W. and Metcalf, P. and Leonov, I. and Yaresko, A. and Stojanovic, N. and Berglund, Martin and Guerassimova, N. and Duesterer, S. and Redlin, H. and Duerr, H. A.}, title = {Time-resolved resonant soft x-ray diffraction with free-electron lasers femtosecond dynamics across the Verwey transition in magnetite}, series = {Applied physics letters}, volume = {98}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3584855}, pages = {3}, year = {2011}, abstract = {Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e. g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium.}, language = {en} } @article{ThielemannKuehnHoffmannFoehlisch2012, author = {Thielemann-K{\"u}hn, Nele and Hoffmann, P. and F{\"o}hlisch, Alexander}, title = {A versatile detector for total fluorescence and electron yield experiments}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4754126}, pages = {3}, year = {2012}, abstract = {The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.}, language = {en} } @article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} } @article{OvsyannikovKarlssonLundqvistetal.2013, author = {Ovsyannikov, Ruslan and Karlsson, P. and Lundqvist, M. and Lupulescu, C. and Eberhardt, W. and F{\"o}hlisch, Alexander and Svensson, S. and Martensson, N.}, title = {Principles and operation of a new type of electron spectrometer - ArTOF}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {191}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2013.08.005}, pages = {92 -- 103}, year = {2013}, abstract = {A new energy and angular electron analyzer ArTOF (Angular Resolved Time of Flight) is described. The analyzer is based on simultaneous measurement of flight times and angles in an advanced electron lens system. In angular modes the new analyzer combines an increase in transmission by almost three orders of magnitude with improved resolution, in comparison to standard state-of-the-art electron spectrometers. In this report we describe some design principles and we give a review of calibration and alignment procedures necessary for the use of the ArTOF on a synchrotron radiation facility. Our program scripts to handle the large datasets are also discussed. Furthermore we give a broad description of the new research fields that benefit from the use of the ArTOF and give a short summary of the first results of angle resolved photoemission measurement with ArTOF using the single-bunch X-ray pulses from the BESSY II storage ring facility. (C) 2013 Published by Elsevier B.V.}, language = {en} } @article{KunnusJosefssonSchrecketal.2013, author = {Kunnus, Kristjan and Josefsson, Ida and Schreck, Simon and Quevedo, Wilson and Miedema, Piter S. and Techert, Simone and de Groot, Frank M. F. and Odelius, Michael and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {From Ligand Fields to Molecular Orbitals: Probing the Local Valence Electronic Structure of Ni2+ in Aqueous Solution with Resonant Inelastic X-ray Scattering}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {51}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp4100813}, pages = {16512 -- 16521}, year = {2013}, abstract = {Bonding of the Ni2+(aq) complex is investigated with an unprecedented combination of resonant inelastic X-ray scattering (RIXS) measurements and ab initio calculations at the Ni L absorption edge. The spectra directly reflect the relative energies of the ligand-field and charge-transfer valence-excited states. They give element-specific access with atomic resolution to the ground-state electronic structure of the complex and allow quantification of ligand-field strength and 3d-3d electron correlation interactions in the Ni2+(aq) complex. The experimentally determined ligand-field strength is 10Dq = 1.1 eV. This and the Racah parameters characterizing 3d-3d Coulomb interactions B = 0.13 eV and C = 0.42 eV as readily derived from the measured energies match very well with the results from UV-vis spectroscopy. Our results demonstrate how L-edge RIXS can be used to complement existing spectroscopic tools for the investigation of bonding in 3d transition-metal coordination compounds in solution. The ab initio RASPT2 calculation is successfully used to simulate the L-edge RIXS spectra.}, language = {en} } @article{BeyeFoehlisch2013, author = {Beye, Martin and F{\"o}hlisch, Alexander}, title = {Soft X-ray probes of ultrafast dynamics for heterogeneous catalysis}, series = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, volume = {414}, journal = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-0104}, doi = {10.1016/j.chemphys.2012.03.023}, pages = {130 -- 138}, year = {2013}, abstract = {Soft X-ray spectroscopy is one of the best tools to directly address the electronic structure, the driving force of chemical reactions. It enables selective studies on sample surfaces to single out reaction centers in heterogeneous catalytic reactions. With core-hole clock methods, specific dynamics are related to the femtosecond life time of a core-hole. Typically, this method is used with photoemission spectroscopy, but advancements in soft X-ray emission techniques render more specific studies possible. With the advent of bright femtosecond pulsed soft X-ray sources, highly selective pump-probe X-ray emission studies are enabled with temporal resolutions down to tens of femtoseconds. This finally allows to study dynamics in the electronic structure of adsorbed reaction centers on the whole range of relevant time scales - closing the gap between kinetic soft X-ray studies and the atto- to femtosecond core-hole clock techniques.}, language = {en} } @article{KoenneckeFollathPontiusetal.2013, author = {K{\"o}nnecke, Rene and Follath, R. and Pontius, N. and Schlappa, J. and Eggenstein, F. and Zeschke, T. and Bischoff, P. and Schmidt, J. -S. and Noll, T. and Trabant, C. and Schreck, S. and Wernet, Ph. and Eisebitt, S. and Senf, F. and Schuessler-Langeheine, Christian and Erko, A. and F{\"o}hlisch, Alexander}, title = {The confocal plane grating spectrometer at BESSY II}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {188}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2012.11.003}, pages = {133 -- 139}, year = {2013}, abstract = {At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 x 1 mu m(2) provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/Delta E of 5000-15,000. The beamline allows full polarization control and gives a photon flux of up to 7 x 10(14) photons/s/0.1 A/0.1\%bandwidth by offering a resolving power E/Delta E of 4000-12,000.}, language = {en} } @article{BeyeWernetSchuesslerLangeheineetal.2013, author = {Beye, Martin and Wernet, Ph. and Sch{\"u}ßler-Langeheine, Christian and F{\"o}hlisch, Alexander}, title = {Time resolved resonant inelastic X-ray scattering: a supreme tool to understand dynamics in solids and molecules}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {188}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2013.04.013}, pages = {172 -- 182}, year = {2013}, abstract = {Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems.}, language = {en} } @article{EschenlohrBattiatoMaldonadoetal.2013, author = {Eschenlohr, Andrea and Battiato, Marco and Maldonado, R. and Pontius, N. and Kachel, T. and Holldack, K. and Mitzner, Rolf and F{\"o}hlisch, Alexander and Oppeneer, P. M. and Stamm, C.}, title = {Ultrafast spin transport as key to femtosecond demagnetization}, series = {Nature materials}, volume = {12}, journal = {Nature materials}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3546}, pages = {332 -- 336}, year = {2013}, abstract = {Irradiating a ferromagnet with a femtosecond laser pulse is known to induce an ultrafast demagnetization within a few hundred femtoseconds. Here we demonstrate that direct laser irradiation is in fact not essential for ultrafast demagnetization, and that electron cascades caused by hot electron currents accomplish it very efficiently. We optically excite a Au/Ni layered structure in which the 30 nm Au capping layer absorbs the incident laser pump pulse and subsequently use the X-ray magnetic circular dichroism technique to probe the femtosecond demagnetization of the adjacent 15 nm Ni layer. A demagnetization effect corresponding to the scenario in which the laser directly excites the Ni film is observed, but with a slight temporal delay. We explain this unexpected observation by means of the demagnetizing effect of a superdiffusive current of non-equilibrium, non-spin-polarized electrons generated in the Au layer.}, language = {en} } @article{deJongKukrejaTrabantetal.2013, author = {de Jong, S. and Kukreja, R. and Trabant, C. and Pontius, N. and Chang, C. F. and Kachel, T. and Beye, Martin and Sorgenfrei, Nomi and Back, C. H. and Braeuer, B. and Schlotter, W. F. and Turner, J. J. and Krupin, O. and Doehler, M. and Zhu, D. and Hossain, M. A. and Scherz, A. O. and Fausti, D. and Novelli, F. and Esposito, M. and Lee, W. S. and Chuang, Y. D. and Lu, D. H. and Moore, R. G. and Yi, M. and Trigo, M. and Kirchmann, P. and Pathey, L. and Golden, M. S. and Buchholz, Marcel and Metcalf, P. and Parmigiani, F. and Wurth, W. and F{\"o}hlisch, Alexander and Schuessler-Langeheine, Christian and Duerr, H. A.}, title = {Speed limit of the insulator-metal transition in magnetite}, series = {Nature materials}, volume = {12}, journal = {Nature materials}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3718}, pages = {882 -- 886}, year = {2013}, abstract = {As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10).}, language = {en} } @article{KatayamaAnniyevBeyeetal.2013, author = {Katayama, T. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and Dell'Angela, M. and F{\"o}hlisch, Alexander and Gladh, J. and Kaya, S. and Krupin, O. and Nilsson, A. and Nordlund, D. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Nomi and Turner, J. J. and Wurth, W. and {\"O}str{\"o}m, H. and Ogasawara, H.}, title = {Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {187}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2013.03.006}, pages = {9 -- 14}, year = {2013}, abstract = {We report on an experimental system designed to probe chemical reactions on solid surfaces on a sub-picosecond timescale using soft X-ray emission spectroscopy at the Linac Coherent Light Source (LCLS) free electron laser (FEL) at the SLAC National Accelerator Laboratory. We analyzed the O 1s X-ray emission spectra recorded from atomic oxygen adsorbed on a Ru(0001) surface at a synchrotron beamline (SSRL, BL13-2) and an FEL beamline (LCLS, SXR). We have demonstrated conditions that provide negligible amount of FEL induced damage of the sample. In addition we show that the setup is capable of tracking the temporal evolution of electronic structure during a surface reaction of submonolayer quantities of CO molecules desorbing from the surface.}, language = {en} } @article{Dell'AngelaAnniyevBeyeetal.2013, author = {Dell'Angela, M. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Gladh, J. and Katayama, T. and Kaya, S. and Krupin, O. and LaRue, J. and Mogelhoj, A. and Nordlund, D. and Norskov, J. K. and Oberg, H. and Ogasawara, H. and Ostrom, H. and Pettersson, Lars G. M. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Nomi and Turner, J. J. and Wolf, M. and Wurth, W. and Nilsson, A.}, title = {Real-time observation of surface bond breaking with an X-ray Laser}, series = {Science}, volume = {339}, journal = {Science}, number = {6125}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1231711}, pages = {1302 -- 1305}, year = {2013}, abstract = {We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30\%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.}, language = {en} } @article{BeyeAnniyevCoffeeetal.2013, author = {Beye, Martin and Anniyev, Toyli and Coffee, Ryan and Dell'Angela, Martina and F{\"o}hlisch, Alexander and Gladh, J. and Katayama, T. and Kaya, S. and Krupin, O. and Mogelhoj, A. and Nilsson, A. and Nordlund, D. and Norskov, J. K. and Oberg, H. and Ogasawara, H. and Pettersson, Lars G. M. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Nomi and Turner, J. J. and Wolf, M. and Wurth, Wilfried and Ostrom, H.}, title = {Selective ultrafast probing of transient hot chemisorbed and precursor States of CO on Ru(0001)}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.186101}, pages = {6}, year = {2013}, abstract = {We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.}, language = {en} } @article{BeyeSchreckSorgenfreietal.2013, author = {Beye, Martin and Schreck, S. and Sorgenfrei, Nomi and Trabant, C. and Pontius, N. and Sch{\"u}ßler-Langeheine, C. and Wurth, W. and F{\"o}hlisch, Alexander}, title = {Stimulated X-ray emission for materials science}, series = {Nature : the international weekly journal of science}, volume = {501}, journal = {Nature : the international weekly journal of science}, number = {7466}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature12449}, pages = {191 -- +}, year = {2013}, abstract = {Resonant inelastic X-ray scattering and X-ray emission spectroscopy can be used to probe the energy and dispersion of the elementary low-energy excitations that govern functionality in matter: vibronic, charge, spin and orbital excitations(1-7). A key drawback of resonant inelastic X-ray scattering has been the need for high photon densities to compensate for fluorescence yields of less than a per cent for soft X-rays(8). Sample damage from the dominant non-radiative decays thus limits the materials to which such techniques can be applied and the spectral resolution that can be obtained. A means of improving the yield is therefore highly desirable. Here we demonstrate stimulated X-ray emission for crystalline silicon at photon densities that are easily achievable with free-electron lasers(9). The stimulated radiative decay of core excited species at the expense of non-radiative processes reduces sample damage and permits narrow-bandwidth detection in the directed beam of stimulated radiation. We deduce how stimulated X-ray emission can be enhanced by several orders of magnitude to provide, with high yield and reduced sample damage, a superior probe for low-energy excitations and their dispersion in matter. This is the first step to bringing nonlinear X-ray physics in the condensed phase from theory(10-16) to application.}, language = {en} } @article{MiedemaBeyeKoenneckeetal.2014, author = {Miedema, P. S. and Beye, Martin and Koennecke, R. and Schiwietz, G. and F{\"o}hlisch, Alexander}, title = {The angular- and crystal-momentum transfer through electron-phonon coupling in silicon and silicon-carbide: similarities and differences}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/9/093056}, pages = {17}, year = {2014}, abstract = {Electron-phonon scattering has been studied for silicon carbide (6H-SiC) with resonant inelastic x-ray scattering at the silicon 2p edge. The observed electron-phonon scattering yields a crystal momentum transfer rate per average phonon in 6H-SiC of 1.8 fs(-1) while it is 0.2 fs(-1) in crystalline silicon. The angular momentum transfer rate per average phonon for 6H-SiC is 0.1 fs(-1), which is much higher than 0.0035 fs(-1) obtained for crystalline silicon in a previous study. The higher electron-phonon scattering rates in 6H-SiC are a result of the larger electron localization at the silicon atoms in 6H-SiC as compared to crystalline silicon. While delocalized valence electrons can screen effectively (part of) the electron-phonon interaction, this effect is suppressed for 6H-SiC in comparison to crystalline silicon. Smaller contributions to the difference in electron-phonon scattering rates between 6H-SiC and silicon arise from the lower atomic mass of carbon versus silicon and the difference in local symmetry.}, language = {en} } @unpublished{FoehlischdeGrootOdeliusetal.2014, author = {F{\"o}hlisch, Alexander and de Groot, F. M. F. and Odelius, Michael and Techert, Simone and Wernet, P.}, title = {Comment on "state-dependent electron delocalization dynamics at the solute-solvent interface: soft-x-ray absorption spectroscopy and lambda b initio calculations"}, series = {Physical review letters}, volume = {112}, journal = {Physical review letters}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.112.129302}, pages = {2}, year = {2014}, language = {en} } @article{MiedemaWernetFoehlisch2014, author = {Miedema, Piter S. and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {State-dependent fluorescence yields through the core-valence Coulomb exchange parameter}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {89}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.89.052507}, pages = {7}, year = {2014}, abstract = {Total and partial fluorescence yield (PFY) L-edge x-ray absorption spectra differ from the transmission x-ray absorption spectra (XAS) through state-dependent fluorescence yield across the XAS. For 3d(1) to 3d(9) in octahedral symmetry we apply simulations of PFY and XAS and show how the atomic 2p3d Coulomb exchange parameter G(pd) governs the differences in the L-3/(L-2 + L-3) branching ratio between PFY and XAS. G(pd) orders the XAS final states following Hund's rules creating a strong state-dependent fluorescence decay strength variation across the XAS leading to the differences between PFY and XAS.}, language = {en} } @article{MiedemaBeyeKoenneckeetal.2014, author = {Miedema, Piter Sybren and Beye, Martin and Koennecke, R. and Schiwietz, Gregor and F{\"o}hlisch, Alexander}, title = {Thermal evolution of the band edges of 6H-SiC: X-ray methods compared to the optical band gap}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {197}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2014.08.003}, pages = {37 -- 42}, year = {2014}, abstract = {The band gap of semiconductors like silicon and silicon carbide (SIC) is the key for their device properties. In this research, the band gap of 6H-SiC and its temperature dependence were analyzed with silicon 2p X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) allowing for a separate analysis of the conduction-band minimum (CBM) and valence-band maximum (VBM) components of the band gap. The temperature-dependent asymmetric band gap shrinking of 6H-SiC was determined with a valence-band slope of +2.45 x 10(-4) eV/K and a conduction-band slope of -1.334 x 10(-4) eV/K. The apparent asymmetry, e.g., that two thirds of the band-gap shrinking with increasing temperature is due to the VBM evolution in 6H-SiC, is similar to the asymmetry obtained for pure silicon before. The overall band gap temperature-dependence determined with XAS and nonresonant XES is compared to temperature-dependent optical studies. The core-excitonic binding energy appearing in the Si 2p XAS is extracted as the main difference. In addition, the energy loss of the onset of the first band in RIXS yields to values similar to the optical band gap over the tested temperature range. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{HolldackOvsyannikovKuskeetal.2014, author = {Holldack, Karsten and Ovsyannikov, Ruslan and Kuske, P. and Mueller, R. and Schaelicke, A. and Scheer, M. and Gorgoi, Mihaela and Kuehn, D. and Leitner, T. and Svensson, S. and Martensson, N. and F{\"o}hlisch, Alexander}, title = {Single bunch X-ray pulses on demand from a multi-bunch synchrotron radiation source}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5010}, pages = {7}, year = {2014}, abstract = {Synchrotron radiation facilities routinely operate in a multi-bunch regime, but applications relying on time-of-flight schemes require single bunch operation. Here we show that pulse picking by resonant excitation in a storage ring creates in addition to the multi-bunch operation a distinct and separable single bunch soft X-ray source. It has variable polarization, a photon flux of up to 10(7)-10(9) ph s(-1)/0.1\%BW at purity values of 10(4)-10(2) and a repetition rate of 1.25 MHz. The quasi-resonant excitation of incoherent betatron oscillations of electrons allows horizontal pulse separation at variable (also circular) polarization accessible for both, regular 30 ps pulses and ultrashort pulses of 2-3 ps duration. Combined with a new generation of angularly resolving electron spectrometers this creates unique opportunities for time-resolved photoemission studies as confirmed by time-of-flight spectra. Our pulse picking scheme is particularly suited for surface physics at diffraction-limited light sources promising ultimate spectral resolution.}, language = {en} } @article{SchreckPietzschKunnusetal.2014, author = {Schreck, Simon and Pietzsch, Annette and Kunnus, Kristjan and Kennedy, Brian and Quevedo, Wilson and Miedema, Piter S. and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {Dynamics of the OH group and the electronic structure of liquid alcohols}, series = {Structural dynamics}, volume = {1}, journal = {Structural dynamics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4897981}, pages = {14}, year = {2014}, abstract = {In resonant inelastic soft x-ray scattering (RIXS) from molecular and liquid systems, the interplay of ground state structural and core-excited state dynamical contributions leads to complex spectral shapes that partially allow for ambiguous interpretations. In this work, we dissect these contributions in oxygen K-edge RIXS from liquid alcohols. We use the scattering into the electronic ground state as an accurate measure of nuclear dynamics in the intermediate core-excited state of the RIXS process. We determine the characteristic time in the core-excited state until nuclear dynamics give a measurable contribution to the RIXS spectral profiles to tau(dyn) = 1.2 +/- 0.8 fs. By detuning the excitation energy below the absorption resonance we reduce the effective scattering time below sdyn, and hence suppress these dynamical contributions to a minimum. From the corresponding RIXS spectra of liquid methanol, we retrieve the "dynamic-free" density of states and find that it is described solely by the electronic states of the free methanol molecule. From this and from the comparison of normal and deuterated methanol, we conclude that the split peak structure found in the lone-pair emission region at non-resonant excitation originates from dynamics in the O-H bond in the core-excited state. We find no evidence that this split peak feature is a signature of distinct ground state structural complexes in liquid methanol. However, we demonstrate how changes in the hydrogen bond coordination within the series of linear alcohols from methanol to hexanol affect the split peak structure in the liquid alcohols. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{YinRajkovicKubiceketal.2014, author = {Yin, Zhong and Rajkovic, Ivan and Kubicek, Katharina and Quevedo, Wilson and Pietzsch, Annette and Wernet, Philippe and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Probing the Hofmeister effect with ultrafast core-hole spectroscopy}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {118}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp504577a}, pages = {9398 -- 9403}, year = {2014}, abstract = {In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect if existent may be caused by more complex interactions.}, language = {en} } @misc{EschenlohrBattiatoMaldonadoetal.2014, author = {Eschenlohr, Andrea and Battiato, Mario and Maldonado, P. and Pontius, N. and Kachel, T. and Holldack, K. and Mitzner, Rolf and F{\"o}hlisch, Alexander and Oppeneer, P. M. and Stamm, Christian}, title = {Optical excitation of thin magnetic layers in multilayer structures Reply}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/nmat3851}, pages = {102 -- 103}, year = {2014}, language = {en} } @article{SchreckBeyeSellbergetal.2014, author = {Schreck, Simon and Beye, Martin and Sellberg, Jonas A. and McQueen, Trevor and Laksmono, Hartawan and Kennedy, Brian and Eckert, Sebastian and Schlesinger, Daniel and Nordlund, Dennis and Ogasawara, Hirohito and Sierra, Raymond G. and Segtnan, Vegard H. and Kubicek, Katharina and Schlotter, William F. and Dakovski, Georgi L. and Moeller, Stefan P. and Bergmann, Uwe and Techert, Simone and Pettersson, Lars G. M. and Wernet, Philippe and Bogan, Michael J. and Harada, Yoshihisa and Nilsson, Anders and F{\"o}hlisch, Alexander}, title = {Reabsorption of soft x-ray emission at high x-ray free-electron laserfluences}, series = {Physical review letters}, volume = {113}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.113.153002}, pages = {6}, year = {2014}, abstract = {We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.}, language = {en} } @article{OstromObergXinetal.2015, author = {Ostrom, H. and Oberg, H. and Xin, H. and Larue, J. and Beye, Martin and Gladh, J. and Ng, M. L. and Sellberg, J. A. and Kaya, S. and Mercurio, G. and Nordlund, D. and Hantschmann, Markus and Hieke, F. and Kuehn, D. and Schlotter, W. F. and Dakovski, G. L. and Turner, J. J. and Minitti, M. P. and Mitra, A. and Moeller, S. P. and F{\"o}hlisch, Alexander and Wolf, M. and Wurth, W. and Persson, Mats and Norskov, J. K. and Abild-Pedersen, Frank and Ogasawara, Hirohito and Pettersson, Lars G. M. and Nilsson, A.}, title = {Probing the transition state region in catalytic CO oxidation on Ru}, series = {Science}, volume = {347}, journal = {Science}, number = {6225}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1261747}, pages = {978 -- 982}, year = {2015}, abstract = {Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the OK-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10\% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.}, language = {en} } @article{WernetKunnusJosefssonetal.2015, author = {Wernet, Philippe and Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Quevedo, Wilson and Beye, Martin and Schreck, Simon and Gruebel, S. and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and de Groot, Frank M. F. and Gaffney, Kelly J. and Techert, Simone and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution}, series = {Nature : the international weekly journal of science}, volume = {520}, journal = {Nature : the international weekly journal of science}, number = {7545}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14296}, pages = {78 -- 81}, year = {2015}, abstract = {Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.}, language = {en} } @article{XinLaRueObergetal.2015, author = {Xin, Hong and LaRue, Jerry and Oberg, Henrik and Beye, Martin and Turner, J. J. and Gladh, J{\"o}rgen and Ng, May L. and Sellberg, Jonas A. and Kaya, Sarp and Mercurio, G. and Hieke, F. and Nordlund, Dennis and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and F{\"o}hlisch, Alexander and Wolf, Martin and Wurth, Wilfried and Ogasawara, Hirohito and Norskov, Jens K. and Ostrom, Henrik and Pettersson, Lars G. M. and Nilsson, Anders and Abild-Pedersen, Frank}, title = {Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.156101}, pages = {6}, year = {2015}, abstract = {We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5 sigma and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.}, language = {en} } @article{FoersterLindenauLeyendeckeretal.2015, author = {F{\"o}rster, Daniel F. and Lindenau, Bernd and Leyendecker, Marko and Janssen, Franz and Winkler, Carsten and Schumann, Frank O. and Kirschner, Juergen and Holldack, Karsten and F{\"o}hlisch, Alexander}, title = {Phase-locked MHz pulse selector for x-ray sources}, series = {Optics letters : a publication of the Optical Society of America}, volume = {40}, journal = {Optics letters : a publication of the Optical Society of America}, number = {10}, publisher = {Optical Society of America}, address = {Washington}, issn = {0146-9592}, doi = {10.1364/OL.40.002265}, pages = {2265 -- 2268}, year = {2015}, abstract = {Picosecond x-ray pulses are extracted with a phase-locked x-ray pulse selector at 1.25 MHz repetition rate from the pulse trains of the accelerator-driven multiuser x-ray source BESSY II preserving the peak brilliance at high pulse purity. The system consists of a specially designed in-vacuum chopper wheel rotating with approximate to 1 kHz angular frequency. The wheel is driven in an ultrahigh vacuum and is levitated on magnetic bearings being capable of withstanding high centrifugal forces. Pulses are picked by 1252 high-precision slits of 70 mu m width on the outer rim of the wheel corresponding to a temporal opening window of the chopper of 70 ns. We demonstrate how the electronic phase stabilization of +/- 2 ns together with an arrival time jitter of the individual slits of the same order of magnitude allows us to pick short single bunch x-ray pulses out of a 200 ns ion clearing gap in a multibunch pulse train as emitted from a synchrotron facility at 1.25 MHz repetition rate with a pulse purity below the shot noise detection limit. The approach is applicable to any high-repetition pulsed radiation source, in particular in the x-ray spectral range up to 10 keV. The opening window in a real x-ray beamline, its stability, as well as the limits of mechanical pulse picking techniques in the MHz range are discussed. (C) 2015 Optical Society of America}, language = {en} } @article{KunnusSchreckFoehlisch2015, author = {Kunnus, Kristjan and Schreck, Simon and F{\"o}hlisch, Alexander}, title = {Free-electron laser based resonant inelastic X-ray scattering on molecules and liquids}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {204}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2015.08.012}, pages = {345 -- 355}, year = {2015}, abstract = {The unprecedented beam properties of free-electron laser based X-ray sources enable novel resonant inelastic X-ray scattering (RIXS) experiments. Femtosecond time-resolved RIXS can be used to follow charge, spin and structural dynamics of dilute solute molecules in solution. Ultrashort X-ray pulses allow probing of highly radiation sensitive states of matter such as the metastable phase of supercooled liquid water. Nonlinear X-ray probes like amplified spontaneous emission and stimulated resonant X-ray scattering provide an enhanced selectivity and sensitivity as well as a path to control radiation damage and increase the photon yields in RIXS experiments. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{YinRajkovicVeeduetal.2015, author = {Yin, Zhong and Rajkovic, Ivan and Veedu, Sreevidya Thekku and Deinert, Sascha and Raiser, Dirk and Jain, Rohit and Fukuzawa, Hironobu and Wada, Shin-ichi and Quevedo, Wilson and Kennedy, Brian and Schreck, Simon and Pietzsch, Annette and Wernet, Philippe and Ueda, Kyoshi and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Ionic solutions probed by resonant inelastic X-ray scattering}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {229}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {10-12}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2015-0610}, pages = {1855 -- 1867}, year = {2015}, abstract = {X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction.}, language = {en} } @article{PietzschHenniesMiedemaetal.2015, author = {Pietzsch, Annette and Hennies, Franz and Miedema, Piter S. and Kennedy, Brian and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander}, title = {Snapshots of the Fluctuating Hydrogen Bond Network in Liquid Water on the Sub-Femtosecond Timescale with Vibrational Resonant Inelastic x-ray Scattering}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.088302}, pages = {5}, year = {2015}, abstract = {Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules.}, language = {en} } @article{RubenssonSoderstromBinggelietal.2015, author = {Rubensson, Jan-Erik and Soderstrom, Johan and Binggeli, Christian and Grasjo, Joakim and Andersson, Johan and Sathe, Conny and Hennies, Franz and Bisogni, Valentina and Huang, Yaobo and Olalde, Paul and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander and Kennedy, Brian and Pietzsch, Annette}, title = {Rydberg-Resolved Resonant Inelastic Soft X-Ray Scattering: Dynamics at Core Ionization Thresholds}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.133001}, pages = {5}, year = {2015}, abstract = {Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N-2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.}, language = {en} } @article{SellbergMcQueenLaksmonoetal.2015, author = {Sellberg, Jonas A. and McQueen, Trevor A. and Laksmono, Hartawan and Schreck, Simon and Beye, Martin and DePonte, Daniel P. and Kennedy, Brian and Nordlund, Dennis and Sierra, Raymond G. and Schlesinger, Daniel and Tokushima, Takashi and Zhovtobriukh, Iurii and Eckert, Sebastian and Segtnan, Vegard H. and Ogasawara, Hirohito and Kubicek, Katharina and Techert, Simone and Bergmann, Uwe and Dakovski, Georgi L. and Schlotter, William F. and Harada, Yoshihisa and Bogan, Michael J. and Wernet, Philippe and F{\"o}hlisch, Alexander and Pettersson, Lars G. M. and Nilsson, Anders}, title = {X-ray emission spectroscopy of bulk liquid water in "no-man's land"}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4905603}, pages = {9}, year = {2015}, abstract = {The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1)" peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{EckertBeyePietzschetal.2015, author = {Eckert, Sebastian and Beye, Martin and Pietzsch, Annette and Quevedo, Wilson and Hantschmann, Markus and Ochmann, Miguel and Ross, Matthew and Minitti, Michael P. and Turner, Joshua J. and Moeller, Stefan P. and Schlotter, William F. and Dakovski, Georgi L. and Khalil, Munira and Huse, Nils and F{\"o}hlisch, Alexander}, title = {Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids}, series = {Applied physics letters}, volume = {106}, journal = {Applied physics letters}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4907949}, pages = {4}, year = {2015}, abstract = {The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{ObergGladhAnniyevetal.2015, author = {Oberg, H. and Gladh, J{\"o}rgen and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Katayama, T. and Kaya, Sarp and LaRue, Jerry and Mogelhoj, Andreas and Nordlund, Dennis and Ogasawara, Hirohito and Schlotter, William F. and Sellberg, Jonas A. and Sorgenfrei, Nomi and Turner, Joshua J. and Wolf, Martin and Wurth, W. and Ostrom, Henrik and Nilsson, Anders and Norskov, Jens K. and Pettersson, Lars G. M.}, title = {Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state}, series = {Surface science}, volume = {640}, journal = {Surface science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-6028}, doi = {10.1016/j.susc.2015.03.011}, pages = {80 -- 88}, year = {2015}, abstract = {We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (<100 fs) increase of the electronic temperature to nearly 7000 K. The temperature evolution and energy transfer between electrons, substrate phonons and adsorbate is described by the two-temperature model and found to equilibrate on a timescale of a few picoseconds to an elevated local temperature of similar to 2000K. Estimating the free energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment (similar to 1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient state arising from ultrafast heating of the metal substrate. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{Dell'AngelaAnniyevBeyeetal.2015, author = {Dell'Angela, Martina and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Gladh, J{\"o}rgen and Kaya, Sarp and Katayama, Tetsuo and Krupin, Oleg and Nilsson, Anders and Nordlund, Dennis and Schlotter, William F. and Sellberg, Jonas A. and Sorgenfrei, Nomi and Turner, Joshua J. and {\"O}str{\"O}m, Henrik and Ogasawara, Hirohito and Wolf, Martin and Wurth, Wilfried}, title = {Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer}, series = {Structural dynamics}, volume = {2}, journal = {Structural dynamics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4914892}, pages = {10}, year = {2015}, abstract = {Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. (C) 2015 Author(s).}, language = {en} } @article{BeyeOebergXinetal.2016, author = {Beye, Martin and {\"O}berg, Henrik and Xin, Hongliang and Dakovski, Georgi L. and F{\"o}hlisch, Alexander and Gladh, Jorgen and Hantschmann, Markus and Hieke, Florian and Kaya, Sarp and K{\"u}hn, Danilo and LaRue, Jerry and Mercurio, Giuseppe and Minitti, Michael P. and Mitra, Ankush and Moeller, Stefan P. and Ng, May Ling and Nilsson, Anders and Nordlund, Dennis and Norskov, Jens and {\"O}str{\"o}m, Henrik and Ogasawara, Hirohito and Persson, Mats and Schlotter, William F. and Sellberg, Jonas A. and Wolf, Martin and Abild-Pedersen, Frank and Pettersson, Lars G. M. and Wurth, Wilfried}, title = {Chemical Bond Activation Observed with an X-ray Laser}, series = {The journal of physical chemistry letters}, volume = {7}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.6b01543}, pages = {3647 -- 3651}, year = {2016}, abstract = {The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free electron laser to directly observe the decreased bonding antibonding splitting following bond-activation using an ultrashort optical laser pulse.}, language = {en} } @article{KunnusJosefssonRajkovicetal.2016, author = {Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Beye, Martin and Gr{\"u}bel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/10/103011}, pages = {9}, year = {2016}, abstract = {Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources.}, language = {en} } @article{KunnusZhangDelceyetal.2016, author = {Kunnus, Kristjan and Zhang, Wenkai and Delcey, Mickael G. and Pinjari, Rahul V. and Miedema, Piter S. and Schreck, Simon and Quevedo, Wilson and Schr{\"o}der, Henning and F{\"o}hlisch, Alexander and Gaffney, Kelly J. and Lundberg, Marcus and Odelius, Michael and Wernet, Philippe}, title = {Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {120}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.6b04751}, pages = {7182 -- 7194}, year = {2016}, abstract = {The valence-excited states of ferric and ferrous hexacyanide ions in aqueous solution were mapped by resonant inelastic X-ray scattering (RIXS) at the Fe L-2,L-3 and N K edges. Probing of both the central Fe and the ligand N atoms enabled identification of the metal-and ligand-centered excited states, as well as ligand-to-metal and metal-to-ligand charge-transfer excited states. Ab initio calculations utilizing the RASPT2 method were used to simulate the Fe L-2,L-3-edge RIXS spectra and enabled quantification of the covalencies of both occupied and empty orbitals of pi and sigma symmetry. We found that pi back-donation in the ferric complex is smaller than that in the ferrous complex. This is evidenced by the relative amounts of Fe 3d character in the nominally 2 pi CN- molecular orbital of 7\% and 9\% in ferric and ferrous hexacyanide, respectively. Utilizing the direct sensitivity of Fe L-3-edge RIXS to the Fe 3d character in the occupied molecular orbitals, we also found that the donation interactions are dominated by sigma bonding. The latter was found to be stronger in the ferric complex, with an Fe 3d contribution to the nominally 5 sigma CN- molecular orbitals of 29\% compared to 20\% in the ferrous complex. These results are consistent with the notion that a higher charge at the central metal atom increases donation and decreases back-donation.}, language = {en} } @article{KrollKernKubinetal.2016, author = {Kroll, Thomas and Kern, Jan and Kubin, Markus and Ratner, Daniel and Gul, Sheraz and Fuller, Franklin D. and L{\"o}chel, Heike and Krzywinski, Jacek and Lutman, Alberto and Ding, Yuantao and Dakovski, Georgi L. and Moeller, Stefan and Turner, Joshua J. and Alonso-Mori, Roberto and Nordlund, Dennis L. and Rehanek, Jens and Weniger, Christian and Firsov, Alexander and Brzhezinskaya, Maria and Chatterjee, Ruchira and Lassalle-Kaiser, Benedikt and Sierra, Raymond G. and Laksmono, Hartawan and Hill, Ethan and Borovik, Andrew S. and Erko, Alexei and F{\"o}hlisch, Alexander and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe and Bergmann, Uwe}, title = {X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser}, series = {Optics express : the international electronic journal of optics}, volume = {24}, journal = {Optics express : the international electronic journal of optics}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.24.022469}, pages = {22469 -- 22480}, year = {2016}, abstract = {X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. (C) 2016 Optical Society of America}, language = {en} } @article{SchickLeGuyaderPontiusetal.2016, author = {Schick, Daniel and Le Guyader, Loic and Pontius, Niko and Radu, Ilie and Kachel, Torsten and Mitzner, Rolf and Zeschke, Thomas and Schuessler-Langeheine, Christian and F{\"o}hlisch, Alexander and Holldack, Karsten}, title = {Analysis of the halo background in femtosecond slicing experiments}, series = {Journal of synchrotron radiation}, volume = {23}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S160057751600401X}, pages = {700 -- 711}, year = {2016}, abstract = {The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated.}, language = {en} } @article{SchreckPietzschKennedyetal.2016, author = {Schreck, Simon and Pietzsch, Annette and Kennedy, Brian and Sathe, Conny and Miedema, Piter S. and Techert, Simone and Strocov, Vladimir N. and Schmitt, Thorsten and Hennies, Franz and Rubensson, Jan-Erik and F{\"o}hlisch, Alexander}, title = {Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep20054}, pages = {7}, year = {2016}, abstract = {Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.}, language = {en} } @article{EckertMiedemaQuevedoetal.2016, author = {Eckert, Sebastian and Miedema, P. S. and Quevedo, W. and Fondell, Mattis and Beye, Martin and Pietzsch, Annette and Ross, M. and Khalil, M. and F{\"o}hlisch, Alexander}, title = {Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution}, series = {Chemical physics letters}, volume = {647}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2016.01.050}, pages = {103 -- 106}, year = {2016}, abstract = {The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms. (C) 2016 The Authors. Published by Elsevier B.V.}, language = {en} } @article{SchickEckertPontiusetal.2016, author = {Schick, Daniel and Eckert, Sebastian and Pontius, Niko and Mitzner, Rolf and F{\"o}hlisch, Alexander and Holldack, Karsten and Sorgenfrei, Nomi}, title = {Versatile soft X-ray-optical cross-correlator for ultrafast applications}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4964296}, pages = {054304-1 -- 054304-8}, year = {2016}, abstract = {We present an X-ray-optical cross-correlator for the soft (> 150 eV) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50\% total X-ray reflectivity and transient signal changes of more than 20\%. (C) 2016 Author(s).}, language = {en} }