@article{SandhageHofmannAngombeKindermannetal.2022, author = {Sandhage-Hofmann, Alexandra and Angombe, Simon and Kindermann, Liana and Linst{\"a}dter, Anja and M{\"o}rchen, Ramona}, title = {Conservation with elephants and agricultural intensification}, series = {Geoderma : an international journal of soil science}, volume = {425}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2022.116009}, pages = {15}, year = {2022}, abstract = {Nature conservation is currently shaping many terrestrial ecosystems in Africa. This is particularly evident in Sub-Saharan Africa (SSA), where conservation is intended to recover wildlife populations, with special focus on elephants. Rising numbers of elephants induce woody biomass losses but increase soil organic carbon (SOC) stocks from decaying wood and dung. We hypothesized that these increases under wildlife conservation in SSA go along with rising contents of plant residues in SOC, traceable by the molecular markers lignin and n-alkanes. In contrast, agricultural intensification would reduce them due to lower C input and faster SOC turnover through tillage. To test this, we analyzed lignin by the CuO oxidation method and n-alkanes by fast pressurized solvent extraction in topsoils (0-10 cm) of Arenosols and corresponding plant samples (trees, grasses and crops). Sampling sites followed conservation gradients with low, medium and high elephant densities and intensification gradients with rangeland and cropland in the woodland savanna of the Namibian Zambezi Region. Patterns of lignin-derived phenols were retained in the soil, whereas n-alkanes showed shifts in chain lengths. n-Alkanes also showed no clear increase or decrease under conservation or intensification, respectively. Differently, lignin-derived phenols showed lower values under intensification than under conservation. Confirming our hypothesis, rising SOC contents with rising elephant densities (from 4.4 at low to 5.7 g kg(-1) SOC at high elephant densities) went along with an increasing accumulation of lignin-derived phenols (24.4-34.8 g kg(-1) VSCOC). This increase is associated with the input of woody debris to the soil, as indicated by V-units and carbon isotopes, modulated by clay and woody biomass. We conclude, that increasing input of woody residues into soil by browsing behaviour of elephants is an important mechanism for controlling SOC supply in the context of wildlife conservation and is traceable with lignin-derived phenols, but not with n-alkanes.}, language = {en} } @article{WenderingNikoloski2022, author = {Wendering, Philipp and Nikoloski, Zoran}, title = {Genome-scale modeling specifies the metabolic capabilities of Rhizophagus irregularis}, series = {mSystems}, volume = {7}, journal = {mSystems}, number = {1}, publisher = {American Society for Microbiology}, address = {Washington, DC}, issn = {2379-5077}, doi = {10.1128/msystems.01216-21}, pages = {17}, year = {2022}, abstract = {Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (rS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.}, language = {en} } @article{MatzWangKulshreshthaetal.2022, author = {Matz, Timon W. and Wang, Yang and Kulshreshtha, Ritika and Sampathkumar, Arun and Nikoloski, Zoran}, title = {Topological properties accurately predict cell division events and organization of shoot apical meristem in Arabidopsis thaliana}, series = {Development : Company of Biologists}, volume = {149}, journal = {Development : Company of Biologists}, number = {16}, publisher = {Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.201024}, pages = {11}, year = {2022}, abstract = {Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76\%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.}, language = {en} } @article{MollavaliBoernke2022, author = {Mollavali, Mohanna and B{\"o}rnke, Frederik}, title = {Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes of tomato (Solanum lycopersicum L.) and analysis of their differential expression in response to temperature}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1661-6596}, doi = {10.3390/ijms231911436}, pages = {17}, year = {2022}, abstract = {In plants, the trehalose biosynthetic pathway plays key roles in the regulation of carbon allocation and stress adaptation. Engineering of the pathway holds great promise to increase the stress resilience of crop plants. The synthesis of trehalose proceeds by a two-step pathway in which a trehalose-phosphate synthase (TPS) uses UDP-glucose and glucose-6-phosphate to produce trehalose-6 phosphate (T6P) that is subsequently dephosphorylated by trehalose-6 phosphate phosphatase (TPP). While plants usually do not accumulate high amounts of trehalose, their genome encodes large families of putative trehalose biosynthesis genes, with many members lacking obvious enzymatic activity. Thus, the function of putative trehalose biosynthetic proteins in plants is only vaguely understood. To gain a deeper insight into the role of trehalose biosynthetic proteins in crops, we assessed the enzymatic activity of the TPS/TPP family from tomato (Solanum lycopersicum L.) and investigated their expression pattern in different tissues as well as in response to temperature shifts. From the 10 TPS isoforms tested, only the 2 proteins belonging to class I showed enzymatic activity, while all 5 TPP isoforms investigated were catalytically active. Most of the TPS/TPP family members showed the highest expression in mature leaves, and promoter-reporter gene studies suggest that the two class I TPS genes have largely overlapping expression patterns within the vasculature, with only subtle differences in expression in fruits and flowers. The majority of tomato TPS/TPP genes were induced by heat stress, and individual family members also responded to cold. This suggests that trehalose biosynthetic pathway genes could play an important role during temperature stress adaptation. In summary, our study represents a further step toward the exploitation of the TPS and TPP gene families for the improvement of tomato stress resistance.}, language = {en} } @article{GaetjenWieczorekListeketal.2022, author = {G{\"a}tjen, Dominic and Wieczorek, Marek and Listek, Martin and Tomszak, Florian and N{\"o}lle, Volker and Hanack, Katja and Droste, Miriam Susanna}, title = {A switchable secrete-and-capture system enables efficient selection of Pichia pastoris clones producing high yields of Fab fragments}, series = {Journal of immunological methods}, volume = {511}, journal = {Journal of immunological methods}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0022-1759}, doi = {10.1016/j.jim.2022.113383}, pages = {14}, year = {2022}, abstract = {Pichia pastoris (syn. Komagataella phaffii) represents a commonly used expression system in the biotech industry. High clonal variation of transformants, however, typically results in a broad range of specific productivities for secreted proteins. To isolate rare clones with exceedingly high product titers, an extensive number of clones need to be screened. In contrast to high-throughput screenings of P. pastoris clones in microtiter plates, secrete-and -capture methodologies have the potential to efficiently isolate high-producer clones among millions of cells through fluorescence-activated cell sorting (FACS).Here, we describe a novel approach for the non-covalent binding of fragment antigen-binding (Fab) proteins to the cell surface for the isolation of high-producing clones. Eight different single-chain variable fragment (scFv)-based capture matrices specific for the constant part of the Fabs were fused to the Saccharomyces cerevisiae alpha -agglutinin (SAG1) anchor protein for surface display in P. pastoris. By encoding the capture matrix on an episomal plasmid harboring inherently unstable autonomously replicating sequences (ARS), this secrete-and -capture system offers a switchable scFv display. Efficient plasmid clearance upon removal of selective pres-sure enabled the direct use of isolated clones for subsequent Fab production. Flow-sorted clones (n = 276) displaying high amounts of Fabs showed a significant increase in median Fab titers detected in the cell-free supernatant (CFS) compared to unsorted clones (n = 276) when cells were cultivated in microtiter plates (fac-tor in the range of-21-49). Fab titers of clones exhibiting the highest product titer observed for each of the two approaches were increased by up to 8-fold for the sorted clone. Improved Fab yields of sorted cells vs. unsorted cells were confirmed in an upscaled shake flask cultivation of selected candidates (factor in the range of-2-3). Hence, the developed display-based selection method proved to be a valuable tool for efficient clone screening in the early stages of our bioprocess development.}, language = {en} } @article{BanerjeeSilvaLipowskyetal.2022, author = {Banerjee, Pallavi and Silva, Daniel Varon and Lipowsky, Reinhard and Santer, Mark}, title = {The importance of side branches of glycosylphosphatidylinositol anchors}, series = {Glycobiology}, volume = {32}, journal = {Glycobiology}, number = {11}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1460-2423}, doi = {10.1093/glycob/cwac037}, pages = {933 -- 948}, year = {2022}, abstract = {Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.}, language = {en} } @article{SzangoliesRohwaederJeltsch2022, author = {Szangolies, Leonna and Rohw{\"a}der, Marie-Sophie and Jeltsch, Florian}, title = {Single large AND several small habitat patches}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {65}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2022.09.004}, pages = {16 -- 27}, year = {2022}, abstract = {The debate whether single large or several small (SLOSS) patches benefit biodiversity has existed for decades, but recent literature provides increasing evidence for the importance of small habitats. Possible beneficial mechanisms include reduced presence of preda-tors and competitors in small habitat areas or specific functions such as stepping stones for dispersal. Given the increasing amount of studies highlighting individual behavioral differences that may influence these functions, we hypothesize that the advantage of small versus large habitat patches not only depends on patch functionality but also on the presence of animal personalities (i.e., risk-tolerant vs. risk-averse). Using an individual-based, spatially-explicit community model, we analyzed the diversity of mammal communities in landscapes consisting of a few large habitat islands interspersed with different amounts and sizes of small habitat patches. Within these heterogeneous environments, individuals compete for resources and form home-ranges, with only risk-tolerant individuals using habitat edges. Results show that when risk-tolerant individuals exist, small patches increase species diversity. A strong peak occurs at approximately 20\% habitat cover in small patches when those small habitats are only used for foraging but not for breeding and home-range core position. Additional usage as stepping stones for juvenile dispersal further increases species persistence. Over-all, our results reveal that a combination of a few large and several small habitat patches promotes biodiversity by enhancing land-scape heterogeneity. Here, heterogeneity is created by pronounced differences in habitat functionality, increasing edge density, and variability in habitat use by different behavioral types. The finding that a combination of single large AND several small (SLASS) patches is needed for effective biodiversity preservation has implications for advancing landscape conservation. Particularly in struc-turally poor agricultural areas, modern technology enables precise management with the opportunity to create small foraging habitats by excluding less profitable agricultural land from cultivation.}, language = {en} } @article{PohankovaHlavinkaKersebaumetal.2022, author = {Pohankov{\´a}, Eva and Hlavinka, Petr and Kersebaum, Kurt-Christian and Rodr{\´i}guez, Alfredo and Balek, Jan and Bednař{\´i}k, Martin and Dubrovsk{\´y}, Martin and Gobin, Anne and Hoogenboom, Gerrit and Moriondo, Marco and Nendel, Claas and Olesen, J{\o}rgen E. E. and R{\"o}tter, Reimund Paul and Ruiz-Ramos, Margarita and Shelia, Vakhtang and Stella, Tommaso and Hoffmann, Munir Paul and Tak{\´a}č, Jozef and Eitzinger, Josef and Dibari, Camilla and Ferrise, Roberto and Bl{\´a}hov{\´a}, Monika and Trnka, Miroslav}, title = {Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites}, series = {European journal of agronomy}, volume = {134}, journal = {European journal of agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2021.126446}, pages = {27}, year = {2022}, abstract = {Crop rotation, fertilization and residue management affect the water balance and crop production and can lead to different sensitivities to climate change. To assess the impacts of climate change on crop rotations (CRs), the crop model ensemble (APSIM,AQUACROP, CROPSYST, DAISY, DSSAT, HERMES, MONICA) was used. The yields and water balance of two CRs with the same set of crops (winter wheat, silage maize, spring barley and winter rape) in a continuous transient run from 1961 to 2080 were simulated. CR1 was without cover crops and without manure application. Straw after the harvest was exported from the fields. CR2 included cover crops, manure application and crop residue retention left on field. Simulations were performed using two soil types (Chernozem, Cambisol) within three sites in the Czech Republic, which represent temperature and precipitation gradients for crops in Central Europe. For the description of future climatic conditions, seven climate scenarios were used. Six of them had increasing CO \& nbsp;concentrations according RCP 8.5, one had no CO2 increase in the future. The output of an ensemble expected higher productivity by 0.82 t/ha/year and 2.04 t/ha/year for yields and aboveground biomass in the future (2051-2080). However, if the direct effect of a CO2 increase is not considered, the average yields for lowlands will be lower. Compared to CR1, CR2 showed higher average yields of 1.26 t/ha/year for current climatic conditions and 1.41 t/ha/year for future climatic conditions. For the majority of climate change scenarios, the crop model ensemble agrees on the projected yield increase in C3 crops in the future for CR2 but not for CR1. Higher agreement for future yield increases was found for Chernozem, while for Cambisol, lower yields under dry climate scenarios are expected. For silage maize, changes in simulated yields depend on locality. If the same hybrid will be used in the future, then yield reductions should be expected within lower altitudes. The results indicate the potential for higher biomass production from cover crops, but CR2 is associated with almost 120 mm higher evapotranspiration compared to that of CR1 over a 5-year cycle for lowland stations in the future, which in the case of the rainfed agriculture could affect the long-term soil water balance. This could affect groundwater replenishment, especially for locations with fine textured soils, although the findings of this study highlight the potential for the soil water-holding capacity to buffer against the adverse weather conditions.}, language = {en} } @article{WangHeWangetal.2022, author = {Wang, Enli and He, Di and Wang, Jing and Lilley, Julianne M. and Christy, Brendan and Hoffmann, Munir P. and O'Leary, Garry and Hatfield, Jerry L. and Ledda, Luigi and Deligios, Paola A. and Grant, Brian and Jing, Qi and Nendel, Claas and Kage, Henning and Qian, Budong and Rezaei, Ehsan Eyshi and Smith, Ward and Weymann, Wiebke and Ewert, Frank}, title = {How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?}, series = {Climatic change}, volume = {172}, journal = {Climatic change}, number = {1-2}, publisher = {Springer Nature}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-022-03375-2}, pages = {22}, year = {2022}, abstract = {To better understand how climate change might influence global canola production, scientists from six countries have completed the first inter-comparison of eight crop models for simulating growth and seed yield of canola, based on experimental data from six sites across five countries. A sensitivity analysis was conducted with a combination of five levels of atmospheric CO2 concentrations, seven temperature changes, five precipitation changes, together with five nitrogen application rates. Our results were in several aspects different from those of previous model inter-comparison studies for wheat, maize, rice, and potato crops. A partial model calibration only on phenology led to very poor simulation of aboveground biomass and seed yield of canola, even from the ensemble median or mean. A full calibration with additional data of leaf area index, biomass, and yield from one treatment at each site reduced simulation error of seed yield from 43.8 to 18.0\%, but the uncertainty in simulation results remained large. Such calibration (with data from one treatment) was not able to constrain model parameters to reduce simulation uncertainty across the wide range of environments. Using a multi-model ensemble mean or median reduced the uncertainty of yield simulations, but the simulation error remained much larger than observation errors, indicating no guarantee that the ensemble mean/median would predict the correct responses. Using multi-model ensemble median, canola yield was projected to decline with rising temperature (2.5-5.7\% per degrees C), but to increase with increasing CO2 concentration (4.6-8.3\% per 100-ppm), rainfall (2.1-6.1\% per 10\% increase), and nitrogen rates (1.3-6.0\% per 10\% increase) depending on locations. Due to the large uncertainty, these results need to be treated with caution. We further discuss the need to collect new data to improve modelling of several key physiological processes of canola for increased confidence in future climate impact assessments.}, language = {en} } @article{McHuronAdamczakArnouldetal.2022, author = {McHuron, Elizabeth A. and Adamczak, Stephanie and Arnould, John P. Y. and Ashe, Erin and Booth, Cormac and Bowen, W. Don and Christiansen, Fredrik and Chudzinska, Magda and Costa, Daniel P. and Fahlman, Andreas and Farmer, Nicholas A. and Fortune, Sarah M. E. and Gallagher, Cara A. and Keen, Kelly A. and Madsen, Peter T. and McMahon, Clive R. and Nabe-Nielsen, Jacob and Noren, Dawn P. and Noren, Shawn R. and Pirotta, Enrico and Rosen, David A. S. and Speakman, Cassie N. and Villegas-Amtmann, Stella and Williams, Rob}, title = {Key questions in marine mammal bioenergetics}, series = {Conservation physiology}, volume = {10}, journal = {Conservation physiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2051-1434}, doi = {10.1093/conphys/coac055}, pages = {17}, year = {2022}, abstract = {Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key'questions because they received votes from at least 50\% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.}, language = {en} } @article{SporbertJakubkaBucheretal.2022, author = {Sporbert, Maria and Jakubka, Desiree and Bucher, Solveig Franziska and Hensen, Isabell and Freiberg, Martin and Heubach, Katja and K{\"o}nig, Andreas and Nordt, Birgit and Plos, Carolin and Blinova, Ilona and Bonn, Aletta and Knickmann, Barbara and Koubek, Tom{\´a}š and Linst{\"a}dter, Anja and Maškov{\´a}, Tereza and Primack, Richard B. and Rosche, Christoph and Shah, Manzoor A. and Stevens, Albert-Dieter and Tielb{\"o}rger, Katja and Tr{\"a}ger, Sabrina and Wirth, Christian and R{\"o}mermann, Christine}, title = {Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study}, series = {New phytologist}, volume = {235}, journal = {New phytologist}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.18345}, pages = {2199 -- 2210}, year = {2022}, abstract = {Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.}, language = {en} } @article{VencesKoehlerCrottinietal.2022, author = {Vences, Miguel and K{\"o}hler, J{\"o}rn and Crottini, Angelica and Hofreiter, Michael and Hutter, Carl R. and du Preez, Louis and Preick, Michaela and Rakotoarison, Andolalao and Rancilhac, Lo{\"i}s and Raselimanana, Achille P. and Rosa, Gon{\c{c}}alo M. and Scherz, Mark D. and Glaw, Frank}, title = {An integrative taxonomic revision and redefinition of Gephyromantis (Laurentomantis) malagasius based on archival DNA analysis reveals four new mantellid frog species from Madagascar}, series = {Vertebrate zoology}, volume = {72}, journal = {Vertebrate zoology}, publisher = {Senckenberg Gesellschaft f{\"u}r Naturforschung}, address = {Frankfurt am Main}, issn = {1864-5755}, doi = {10.3897/vz.72.e78830}, pages = {271 -- 309}, year = {2022}, abstract = {The subgenus Laurentomantis in the genus Gephyromantis contains some of the least known amphibian species of Madagascar. The six currently valid nominal species are rainforest frogs known from few individuals, hampering a full understanding of the species diversity of the clade. We assembled data on specimens collected during field surveys over the past 30 years and integrated analysis of mitochondrial and nuclear-encoded genes of 88 individuals, a comprehensive bioacoustic analysis, and morphological comparisons to delimit a minimum of nine species-level lineages in the subgenus. To clarify the identity of the species Gephyromantis malagasius, we applied a target-enrichment approach to a sample of the 110 year old holotype of Microphryne malagasia Methuen and Hewitt, 1913 to assign this specimen to a lineage based on a mitochondrial DNA barcode. The holotype clustered unambiguously with specimens previously named G. ventrimaculatus. Consequently we propose to consider Trachymantis malagasia ventrimaculatus Angel, 1935 as a junior synonym of Gephyromantis malagasius. Due to this redefinition of G. malagasius, no scientific name is available for any of the four deep lineages of frogs previously subsumed under this name, all characterized by red color ventrally on the hindlimbs. These are here formally named as Gephyromantis fiharimpe sp. nov., G. matsilo sp. nov., G. oelkrugi sp. nov., and G. portonae sp. nov. The new species are distinguishable from each other by genetic divergences of >4\% uncorrected pairwise distance in a fragment of the 16S rRNA marker and a combination of morphological and bioacoustic characters. Gephyromantis fiharimpe and G. matsilo occur, respectively, at mid-elevations and lower elevations along a wide stretch of Madagascar's eastern rainforest band, while G. oelkrugi and G. portonae appear to be more range-restricted in parts of Madagascar's North East and Northern Central East regions. Open taxonomic questions surround G. horridus, to which we here assign specimens from Montagne d'Ambre and the type locality Nosy Be; and G. ranjomavo, which contains genetically divergent populations from Marojejy, Tsaratanana, and Ampotsidy.}, language = {en} } @article{EsmaeilishirazifardUsherTrimetal.2022, author = {Esmaeilishirazifard, Elham and Usher, Louise and Trim, Carol and Denise, Hubert and Sangal, Vartul and Tyson, Gregory H. and Barlow, Axel and Redway, Keith F. and Taylor, John D. and Kremyda-Vlachou, Myrto and Davies, Sam and Loftus, Teresa D. and Lock, Mikaella M. G. and Wright, Kstir and Dalby, Andrew and Snyder, Lori A. S. and Wuster, Wolfgang and Trim, Steve and Moschos, Sterghios A.}, title = {Bacterial adaptation to venom in snakes and arachnida}, series = {Microbiology spectrum}, volume = {10}, journal = {Microbiology spectrum}, number = {3}, publisher = {American Society for Microbiology}, address = {Birmingham, Ala.}, issn = {2165-0497}, doi = {10.1128/spectrum.02408-21}, pages = {16}, year = {2022}, abstract = {Notwithstanding their 3 to 5\% mortality, the 2.7 million envenomation-related injuries occurring annually-predominantly across Africa, Asia, and Latin America-are also major causes of morbidity. Venom toxin-damaged tissue will develop infections in some 75\% of envenomation victims, with E. faecalis being a common culprit of disease; however, such infections are generally considered to be independent of envenomation. Animal venoms are considered sterile sources of antimicrobial compounds with strong membrane-disrupting activity against multidrug-resistant bacteria. However, venomous bite wound infections are common in developing nations. Investigating the envenomation organ and venom microbiota of five snake and two spider species, we observed venom community structures that depend on the host venomous animal species and evidenced recovery of viable microorganisms from black-necked spitting cobra (Naja nigricollis) and Indian ornamental tarantula (Poecilotheria regalis) venoms. Among the bacterial isolates recovered from N. nigricollis, we identified two venom-resistant, novel sequence types of Enterococcus faecalis whose genomes feature 16 virulence genes, indicating infectious potential, and 45 additional genes, nearly half of which improve bacterial membrane integrity. Our findings challenge the dogma of venom sterility and indicate an increased primary infection risk in the clinical management of venomous animal bite wounds. IMPORTANCE Notwithstanding their 3 to 5\% mortality, the 2.7 million envenomation-related injuries occurring annually-predominantly across Africa, Asia, and Latin America-are also major causes of morbidity. Venom toxin-damaged tissue will develop infections in some 75\% of envenomation victims, with E. faecalis being a common culprit of disease; however, such infections are generally considered to be independent of envenomation. Here, we provide evidence on venom microbiota across snakes and arachnida and report on the convergent evolution mechanisms that can facilitate adaptation to black-necked cobra venom in two independent E. faecalis strains, easily misidentified by biochemical diagnostics. Therefore, since inoculation with viable and virulence gene-harboring bacteria can occur during envenomation, acute infection risk management following envenomation is warranted, particularly for immunocompromised and malnourished victims in resource-limited settings. These results shed light on how bacteria evolve for survival in one of the most extreme environments on Earth and how venomous bites must be also treated for infections.}, language = {en} } @article{RiemannRahavPassowetal.2022, author = {Riemann, Lasse and Rahav, Eyal and Passow, Uta and Grossart, Hans-Peter and de Beer, Dirk and Klawonn, Isabell and Eichner, Meri and Benavides, Mar and Bar-Zeev, Edo}, title = {Planktonic aggregates as hotspots for heterotrophic diazotrophy: the plot thickens}, series = {Frontiers in microbiology}, volume = {13}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.875050}, pages = {9}, year = {2022}, abstract = {Biological dinitrogen (N-2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N-2 fixation by NCDs and propose a conceptual framework for aggregate-associated N-2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.}, language = {en} } @article{SchulteMeucciStoofLeichsenringetal.2022, author = {Schulte, Luise and Meucci, Stefano and Stoof-Leichsenring, Kathleen R. and Heitkam, Tony and Schmidt, Nicola and von Hippel, Barbara and Andreev, Andrei A. and Diekmann, Bernhard and Biskaborn, Boris and Wagner, Bernd and Melles, Martin and Pestryakova, Lyudmila A. and Alsos, Inger G. and Clarke, Charlotte and Krutovsky, Konstantin and Herzschuh, Ulrike}, title = {Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA}, series = {Communications biology}, volume = {5}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2399-3642}, doi = {10.1038/s42003-022-03455-0}, pages = {11}, year = {2022}, abstract = {Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate. Using ancient sedimentary DNA from up to 50 kya, dramatic distributional shifts are documented in two dominant boreal larch species, likely guided by environmental changes suggesting climate as a strong determinant of species distribution.}, language = {en} } @article{DunkerBoydDurkaetal.2022, author = {Dunker, Susanne and Boyd, Matthew and Durka, Walter and Erler, Silvio and Harpole, W. Stanley and Henning, Silvia and Herzschuh, Ulrike and Hornick, Thomas and Knight, Tiffany and Lips, Stefan and M{\"a}der, Patrick and Švara, Elena Motivans and Mozarowski, Steven and Rakosy, Demetra and R{\"o}mermann, Christine and Schmitt-Jansen, Mechthild and Stoof-Leichsenring, Kathleen and Stratmann, Frank and Treudler, Regina and Virtanen, Risto and Wendt-Potthoff, Katrin and Wilhelm, Christian}, title = {The potential of multispectral imaging flow cytometry for environmental monitoring}, series = {Cytometry part A}, volume = {101}, journal = {Cytometry part A}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1552-4922}, doi = {10.1002/cyto.a.24658}, pages = {782 -- 799}, year = {2022}, abstract = {Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.}, language = {en} } @article{GrohDiamantopoulosDuanetal.2022, author = {Groh, Jannis and Diamantopoulos, Efstathios and Duan, Xiaohong and Ewert, Frank and Heinlein, Florian and Herbst, Michael and Holbak, Maja and Kamali, Bahareh and Kersebaum, Kurt-Christian and Kuhnert, Matthias and Nendel, Claas and Priesack, Eckart and Steidl, J{\"o}rg and Sommer, Michael and P{\"u}tz, Thomas and Vanderborght, Jan and Vereecken, Harry and Wallor, Evelyn and Weber, Tobias K. D. and Wegehenkel, Martin and Weiherm{\"u}ller, Lutz and Gerke, Horst H.}, title = {Same soil, different climate: Crop model intercomparison on translocated lysimeters}, series = {Vadose zone journal}, volume = {21}, journal = {Vadose zone journal}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20202}, pages = {25}, year = {2022}, abstract = {Crop model intercomparison studies have mostly focused on the assessment of predictive capabilities for crop development using weather and basic soil data from the same location. Still challenging is the model performance when considering complex interrelations between soil and crop dynamics under a changing climate. The objective of this study was to test the agronomic crop and environmental flux-related performance of a set of crop models. The aim was to predict weighing lysimeter-based crop (i.e., agronomic) and water-related flux or state data (i.e., environmental) obtained for the same soil monoliths that were taken from their original environment and translocated to regions with different climatic conditions, after model calibration at the original site. Eleven models were deployed in the study. The lysimeter data (2014-2018) were from the Dedelow (Dd), Bad Lauchstadt (BL), and Selhausen (Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan network. Soil monoliths from Dd were transferred to the drier and warmer BL site and the wetter and warmer Se site, which allowed a comparison of similar soil and crop under varying climatic conditions. The model parameters were calibrated using an identical set of crop- and soil-related data from Dd. Environmental fluxes and crop growth of Dd soil were predicted for conditions at BL and Se sites using the calibrated models. The comparison of predicted and measured data of Dd lysimeters at BL and Se revealed differences among models. At site BL, the crop models predicted agronomic and environmental components similarly well. Model performance values indicate that the environmental components at site Se were better predicted than agronomic ones. The multi-model mean was for most observations the better predictor compared with those of individual models. For Se site conditions, crop models failed to predict site-specific crop development indicating that climatic conditions (i.e., heat stress) were outside the range of variation in the data sets considered for model calibration. For improving predictive ability of crop models (i.e., productivity and fluxes), more attention should be paid to soil-related data (i.e., water fluxes and system states) when simulating soil-crop-climate interrelations in changing climatic conditions.}, language = {en} } @article{CaoChenTianetal.2022, author = {Cao, Xianyong and Chen, Jianhui and Tian, Fang and Xu, Qinghai and Herzschuh, Ulrike and Telford, Richard and Huang, Xiaozhong and Zheng, Zhuo and Shen, Caiming and Li, Wenjia}, title = {Long-distance modern analogues bias results of pollen-based precipitation reconstructions}, series = {Science bulletin}, volume = {67}, journal = {Science bulletin}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2095-9273}, doi = {10.1016/j.scib.2022.01.003}, pages = {1115 -- 1117}, year = {2022}, language = {en} } @article{VandenWyngaertGanzertSetoetal.2022, author = {Van den Wyngaert, Silke and Ganzert, Lars and Seto, Kensuke and Rojas-Jimenez, Keilor and Agha, Ramsy and Berger, Stella A. and Woodhouse, Jason and Padisak, Judit and Wurzbacher, Christian and Kagami, Maiko and Grossart, Hans-Peter}, title = {Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits}, series = {ISME journal}, volume = {16}, journal = {ISME journal}, number = {9}, publisher = {Springer Nature}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-022-01267-y}, pages = {2242 -- 2254}, year = {2022}, abstract = {Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.}, language = {en} } @article{BelluardoScherzSantosetal.2022, author = {Belluardo, Francesco and Scherz, Mark D. and Santos, Barbara and Andreone, Franco and Antonelli, Alexandre and Glaw, Frank and Munoz-Pajares, A. Jesus and Randrianirina, Jasmin E. and Raselimanana, Achille P. and Vences, Miguel and Crottini, Angelica}, title = {Molecular taxonomic identification and species-level phylogeny of the narrow-mouthed frogs of the genus Rhombophryne (Anura: Microhylidae: Cophylinae) from Madagascar}, series = {Systematics and biodiversity}, volume = {20}, journal = {Systematics and biodiversity}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1477-2000}, doi = {10.1080/14772000.2022.2039320}, pages = {1 -- 13}, year = {2022}, abstract = {The study of diamond frogs (genus Rhombophryne, endemic to Madagascar) has been historically hampered by the paucity of available specimens, because of their low detectability in the field. Over the last 10 years, 13 new taxa have been described, and 20 named species are currently recognized. Nevertheless, undescribed diversity within the genus is probably large, calling for a revision of the taxonomic identification of published records and an update of the known distribution of each lineage. Here we generate DNA sequences of the mitochondrial 16S rRNA gene of all specimens available to us, revise the genetic data from public databases, and report all deeply divergent mitochondrial lineages of Rhombophryne identifiable from these data. We also generate a multi-locus dataset (including five mitochondrial and eight nuclear markers; 9844 bp) to infer a species-level phylogenetic hypothesis for the diversification of this genus and revise the distribution of each lineage. We recognize a total of 10 candidate species, two of which are identified here for the first time. The genus Rhombophryne is here proposed to be divided into six main species groups, and phylogenetic relationships among some of them are not fully resolved. These frogs are primarily distributed in northern Madagascar, and most species are known from only few localities. A previous record of this genus from the Tsingy de Bemaraha (western Madagascar) is interpreted as probably due to a mislabelling and should not be considered further unless confirmed by new data. By generating this phylogenetic hypothesis and providing an updated distribution of each lineage, our findings will facilitate future species descriptions, pave the way for evolutionary studies, and provide valuable information for the urgent conservation of diamond frogs.}, language = {en} } @article{GarbulowskiSmolinskaCabuketal.2022, author = {Garbulowski, Mateusz and Smolinska, Karolina and {\c{C}}abuk, Uğur and Yones, Sara A. and Celli, Ludovica and Yaz, Esma Nur and Barrenas, Fredrik and Diamanti, Klev and Wadelius, Claes and Komorowski, Jan}, title = {Machine learning-based analysis of glioma grades reveals co-enrichment}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6694}, doi = {10.3390/cancers14041014}, pages = {19}, year = {2022}, abstract = {Simple Summary Gliomas are heterogenous types of cancer, therefore the therapy should be personalized and targeted toward specific pathways. We developed a methodology that corrected strong batch effects from The Cancer Genome Atlas datasets and estimated glioma grade-specific co-enrichment mechanisms using machine learning. Our findings created hypotheses for annotations, e.g., pathways, that should be considered as therapeutic targets. Gliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers. Thus, we applied an interpretable machine learning approach to discover such relationships. This type of transparent learning provides not only good predictability, but also reveals co-predictive mechanisms among features. In this study, we corrected the strong and confounded batch effect in the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine learning analysis applied on single-sample gene set enrichment scores using collections from the Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks of co-enrichment related to glioma grades. Moreover, we validated our results using the external glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the application and validation of any future studies. Finally, the co-enrichment and survival analysis provided detailed explanations for glioma progression and consequently, it should support the targeted treatment.}, language = {en} } @article{NumbergerZoccaratoWoodhouseetal.2022, author = {Numberger, Daniela and Zoccarato, Luca and Woodhouse, Jason Nicholas and Ganzert, Lars and Sauer, Sascha and Garc{\´i}a M{\´a}rquez, Jaime Ricardo and Domisch, Sami and Grossart, Hans-Peter and Greenwood, Alex}, title = {Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {845}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.157321}, pages = {13}, year = {2022}, abstract = {Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urban-ization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sedi-ments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urban-ization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.}, language = {en} } @article{DerežaninBlažytėDobryninetal.2022, author = {Derežanin, Lorena and Blažytė, Asta and Dobrynin, Pavel and Duch{\^e}ne, David A. and Grau, Jos{\´e} Horacio and Jeon, Sungwon and Kliver, Sergei and Koepfli, Klaus-Peter and Meneghini, Dorina and Preick, Michaela and Tomarovsky, Andrey and Totikov, Azamat and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16443}, pages = {2898 -- 2919}, year = {2022}, abstract = {Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes and searching for species-specific structural variants. Among candidate loci associated with phenotypic traits, we observed many related to diet, body condition and reproduction. For example, for the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observed species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many changes in genes associated with diet and body condition. All types of genomic variation examined (single nucleotide polymorphisms, gene family expansions, structural variants) contributed substantially to the identification of candidate loci. This argues strongly for consideration of variation other than single nucleotide polymorphisms in comparative genomics studies aiming to identify loci of adaptive significance.}, language = {en} } @article{AbdelilahSeyfriedIruelaArispePenningeretal.2022, author = {Abdelilah-Seyfried, Salim and Iruela-Arispe, M. Luisa and Penninger, Josef M. and Tournier-Lasserve, Elisabeth and Vikkula, Miikka and Cleaver, Ondine}, title = {Recalibrating vascular malformations and mechanotransduction by pharmacological intervention}, series = {Journal of clinical investigation}, volume = {132}, journal = {Journal of clinical investigation}, number = {8}, publisher = {American Society for Clinical Investigation}, address = {Ann Arbor}, issn = {0021-9738}, doi = {10.1172/JCI160227}, pages = {4}, year = {2022}, language = {en} } @article{CaoTianHerzschuhetal.2022, author = {Cao, Xianyong and Tian, Fang and Herzschuh, Ulrike and Ni, Jian and Xu, Qinghai and Li, Wenjia and Zhang, Yanrong and Luo, Mingyu and Chen, Fahu}, title = {Human activities have reduced plant diversity in eastern China over the last two millennia}, series = {Global change biology}, volume = {28}, journal = {Global change biology}, number = {16}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.16274}, pages = {4962 -- 4976}, year = {2022}, abstract = {Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50\% to ca. 80\% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south-north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period.}, language = {en} } @article{PeterWenderingSchlickeiseretal.2022, author = {Peter, Lena and Wendering, D{\´e}sir{\´e}e Jacqueline and Schlickeiser, Stephan and Hoffmann, Henrike and Noster, Rebecca and Wagner, Dimitrios Laurin and Zarrinrad, Ghazaleh and M{\"u}nch, Sandra and Picht, Samira and Schulenberg, Sarah and Moradian, Hanieh and Mashreghi, Mir-Farzin and Klein, Oliver and Gossen, Manfred and Roch, Toralf and Babel, Nina and Reinke, Petra and Volk, Hans-Dieter and Amini, Leila and Schmueck-Henneresse, Michael}, title = {Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients}, series = {Molecular therapy methods and clinical development}, volume = {25}, journal = {Molecular therapy methods and clinical development}, publisher = {Cell Press}, address = {Cambridge}, issn = {2329-0501}, doi = {10.1016/j.omtm.2022.02.012}, pages = {52 -- 73}, year = {2022}, abstract = {Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.}, language = {en} } @article{XuGiannettiSugiyamaetal.2022, author = {Xu, Huizhen and Giannetti, Alessandro and Sugiyama, Yuki and Zheng, Wenna and Schneider, Ren{\´e} and Watanabe, Yoichiro and Oda, Yoshihisa and Persson, Staffan}, title = {Secondary cell wall patterning-connecting the dots, pits and helices}, series = {Open biology}, volume = {12}, journal = {Open biology}, number = {5}, publisher = {Royal Society}, address = {London}, issn = {2046-2441}, doi = {10.1098/rsob.210208}, pages = {18}, year = {2022}, abstract = {All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.}, language = {en} } @article{TabatabaeiAlseekhShahidetal.2022, author = {Tabatabaei, Iman and Alseekh, Saleh and Shahid, Mohammad and Leniak, Ewa and Wagner, Mateusz and Mahmoudi, Henda and Thushar, Sumitha and Fernie, Alisdair and Murphy, Kevin M. and Schm{\"o}ckel, Sandra M. and Tester, Mark and M{\"u}ller-R{\"o}ber, Bernd and Skirycz, Aleksandra and Balazadeh, Salma}, title = {The diversity of quinoa morphological traits and seed metabolic composition}, series = {Scientific data}, volume = {9}, journal = {Scientific data}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2052-4463}, doi = {10.1038/s41597-022-01399-y}, pages = {7}, year = {2022}, abstract = {Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.}, language = {en} } @article{SchwiederWesemeyerFrantzetal.2022, author = {Schwieder, Marcel and Wesemeyer, Maximilian and Frantz, David and Pfoch, Kira and Erasmi, Stefan and Pickert, J{\"u}rgen and Nendel, Claas and Hostert, Patrick}, title = {Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series}, series = {Remote sensing of environment}, volume = {269}, journal = {Remote sensing of environment}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2021.112795}, pages = {16}, year = {2022}, abstract = {Spatially explicit knowledge on grassland extent and management is critical to understand and monitor the impact of grassland use intensity on ecosystem services and biodiversity. While regional studies allow detailed insights into land use and ecosystem service interactions, information on a national scale can aid biodiversity assessments. However, for most European countries this information is not yet widely available. We used an analysis-ready-data cube that contains dense time series of co-registered Sentinel-2 and Landsat 8 data, covering the extent of Germany. We propose an algorithm that detects mowing events in the time series based on residuals from an assumed undisturbed phenology, as an indicator of grassland use intensity. A self-adaptive ruleset enabled to account for regional variations in land surface phenology and non-stationary time series on a pixelbasis. We mapped mowing events for the years from 2017 to 2020 for permanent grassland areas in Germany. The results were validated on a pixel level in four of the main natural regions in Germany based on reported mowing events for a total of 92 (2018) and 78 (2019) grassland parcels. Results for 2020 were evaluated with combined time series of Landsat, Sentinel-2 and PlanetScope data. The mean absolute percentage error between detected and reported mowing events was on average 40\% (2018), 36\% (2019) and 35\% (2020). Mowing events were on average detected 11 days (2018), 7 days (2019) and 6 days (2020) after the reported mowing. Performance measures varied between the different regions of Germany, and lower accuracies were found in areas that are revisited less frequently by Sentinel-2. Thus, we assessed the influence of data availability and found that the detection of mowing events was less influenced by data availability when at least 16 cloud-free observations were available in the grassland season. Still, the distribution of available observations throughout the season appeared to be critical. On a national scale our results revealed overall higher shares of less intensively mown grasslands and smaller shares of highly intensively managed grasslands. Hotspots of the latter were identified in the alpine foreland in Southern Germany as well as in the lowlands in the Northwest of Germany. While these patterns were stable throughout the years, the results revealed a tendency to lower management intensity in the extremely dry year 2018. Our results emphasize the ability of the approach to map the intensity of grassland management throughout large areas despite variations in data availability and environmental conditions.}, language = {en} } @article{AlshareefOtterbachAlluetal.2022, author = {Alshareef, Nouf Owdah and Otterbach, Sophie L. and Allu, Annapurna Devi and Woo, Yong H. and de Werk, Tobias and Kamranfar, Iman and M{\"u}ller-R{\"o}ber, Bernd and Tester, Mark and Balazadeh, Salma and Schm{\"o}ckel, Sandra M.}, title = {NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-14429-x}, pages = {15}, year = {2022}, abstract = {Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.}, language = {en} } @article{HoangGryzikHoppeetal.2022, author = {Hoang, Yen and Gryzik, Stefanie and Hoppe, Ines and Rybak, Alexander and Sch{\"a}dlich, Martin and Kadner, Isabelle and Walther, Dirk and Vera, Julio and Radbruch, Andreas and Groth, Detlef and Baumgart, Sabine and Baumgrass, Ria}, title = {PRI: Re-analysis of a public mass cytometry dataset reveals patterns of effective tumor treatments}, series = {Frontiers in immunology}, volume = {13}, journal = {Frontiers in immunology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.849329}, pages = {9}, year = {2022}, abstract = {Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4(+)T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.}, language = {en} } @article{TianQinZhangetal.2022, author = {Tian, Fang and Qin, Wen and Zhang, Ran and Herzschuh, Ulrike and Ni, Jian and Zhang, Chengjun and Mischke, Steffen and Cao, Xianyong}, title = {Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years}, series = {Vegetation history and archaeobotany}, volume = {31}, journal = {Vegetation history and archaeobotany}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-022-00870-5}, pages = {549 -- 558}, year = {2022}, abstract = {The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components-Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae-are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal.}, language = {en} } @article{VatovaRubinGrossartetal.2022, author = {Vatova, Mariyana and Rubin, Conrad and Grossart, Hans-Peter and Goncalves, Susana C. and Schmidt, Susanne I. and Jarić, Ivan}, title = {Aquatic fungi: largely neglected targets for conservation}, series = {Frontiers in ecology and the environment}, volume = {20}, journal = {Frontiers in ecology and the environment}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1540-9295}, doi = {10.1002/fee.2495}, pages = {207 -- 209}, year = {2022}, language = {en} } @article{GluecklerGengGrimmetal.2022, author = {Gl{\"u}ckler, Ramesh and Geng, Rongwei and Grimm, Lennart and Baisheva, Izabella and Herzschuh, Ulrike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Andreev, Andrej Aleksandrovic and Pestryakova, Luidmila and Dietze, Elisabeth}, title = {Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.962906}, pages = {19}, year = {2022}, abstract = {Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.}, language = {en} } @article{WelkeSperberBergmannetal.2022, author = {Welke, Robert-William and Sperber, Hannah Sabeth and Bergmann, Ronny and Koikkarah, Amit and Menke, Laura and Sieben, Christian and Kr{\"u}ger, Detlev H. and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Characterization of hantavirus N protein intracellular dynamics and localization}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v14030457}, pages = {14}, year = {2022}, abstract = {Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins.}, language = {en} } @article{KamaliJahanbakhshiDogaruetal.2022, author = {Kamali, Bahareh and Jahanbakhshi, Farshid and Dogaru, Diana and Dietrich, J{\"o}rg and Nendel, Claas and AghaKouchak, Amir}, title = {Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {2}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac4ec1}, pages = {15}, year = {2022}, abstract = {Assessing the risk of yield loss in African drought-affected regions is key to identify feasible solutions for stable crop production. Recent studies have demonstrated that Copula-based probabilistic methods are well suited for such assessment owing to reasonably inferring important properties in terms of exceedance probability and joint dependence of different characterization. However, insufficient attention has been given to quantifying the probability of yield loss and determining the contribution of climatic factors. This study applies the Copula theory to describe the dependence between drought and crop yield anomalies for rainfed maize, millet, and sorghum crops in sub-Saharan Africa (SSA). The environmental policy integrated climate model, calibrated with Food and Agriculture Organization country-level yield data, was used to simulate yields across SSA (1980-2012). The results showed that the severity of yield loss due to drought had a higher magnitude than the severity of drought itself. Sensitivity analysis to identify factors contributing to drought and high-temperature stresses for all crops showed that the amount of precipitation during vegetation and grain filling was the main driver of crop yield loss, and the effect of temperature was stronger for sorghum than for maize and millet. The results demonstrate the added value of probabilistic methods for drought-impact assessment. For future studies, we recommend looking into factors influencing drought and high-temperature stresses as individual/concurrent climatic extremes.}, language = {en} } @article{KamaliLoriteWebberetal.2022, author = {Kamali, Bahareh and Lorite, Ignacio J. and Webber, Heidi A. and Rezaei, Ehsan Eyshi and Gabaldon-Leal, Clara and Nendel, Claas and Siebert, Stefan and Ramirez-Cuesta, Juan Miguel and Ewert, Frank and Ojeda, Jonathan J.}, title = {Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited,}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-08056-9}, pages = {13}, year = {2022}, abstract = {This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R-2 values (showing the degree of agreement between simulated and observed yields) increased by 29\% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66\%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale.}, language = {en} } @article{TolomeevDubovskayaKirillinetal.2022, author = {Tolomeev, Aleksandr P. and Dubovskaya, Olga P. and Kirillin, Georgiy and Buseva, Zhanna and Kolmakova, Olesya and Grossart, Hans-Peter and Tang, Kam W. and Gladyšev, Michail I.}, title = {Degradation of dead cladoceran zooplankton and their contribution to organic carbon cycling in stratified lakes}, series = {Journal of plankton research}, volume = {44}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbac023}, pages = {386 -- 400}, year = {2022}, abstract = {The contribution of dead zooplankton biomass to carbon cycle in aquatic ecosystems is practically unknown. Using abundance data of zooplankton in water column and dead zooplankton in sediment traps in Lake Stechlin, an ecological-mathematical model was developed to simulate the abundance and sinking of zooplankton carcasses and predict the related release of labile organic matter (LOM) into the water column. We found species-specific differences in mortality rate of the dominant zooplankton: Daphnia cucullata, Bosmina coregoni and Diaphanosoma brachyurum (0.008, 0.129 and 0.020 day(-1), respectively) and differences in their carcass sinking velocities in metalimnion (and hypolimnion): 2.1 (7.64), 14.0 (19.5) and 1.1 (5.9) m day(-1), respectively. Our model simulating formation and degradation processes of dead zooplankton predicted a bimodal distribution of the released LOM: epilimnic and metalimnic peaks of comparable intensity, ca. 1 mg DW m(-3) day(-1). Maximum degradation of carcasses up to ca. 1.7 mg DW m(-3) day(-1) occurred in the density gradient zone of metalimnion. LOM released from zooplankton carcasses into the surrounding water may stimulate microbial activity and facilitate microbial degradation of more refractory organic matter; therefore, dead zooplankton are expected to be an integral part of water column carbon source/sink dynamics in stratified lakes.}, language = {en} } @article{LeongRaffeinerSpintietal.2022, author = {Leong, Jia Xuan and Raffeiner, Margot and Spinti, Daniela and Langin, Gautier and Franz-Wachtel, Mirita and Guzman, Andrew R. and Kim, Jung-Gun and Pandey, Pooja and Minina, Alyona E. and Macek, Boris and Hafren, Anders and Bozkurt, Tolga O. and Mudgett, Mary Beth and B{\"o}rnke, Frederik and Hofius, Daniel and Uestuen, Suayib}, title = {A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component}, series = {The EMBO journal}, volume = {41}, journal = {The EMBO journal}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {1460-2075}, doi = {10.15252/embj.2021110352}, pages = {17}, year = {2022}, abstract = {Beyond its role in cellular homeostasis, autophagy plays anti- and promicrobial roles in host-microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well-described in animals, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type-III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense-related autophagy in plant-bacteria interactions.}, language = {en} } @article{AgneNaylorPreicketal.2022, author = {Agne, Stefanie and Naylor, Gavin J. P. and Preick, Michaela and Yang, Lei and Thiel, Ralf and Weigmann, Simon and Paijmans, Johanna L. A. and Barlow, Axel and Hofreiter, Michael and Straube, Nicolas}, title = {Taxonomic identification of two poorly known lantern shark species based on mitochondrial DNA from wet-collection paratypes}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.910009}, pages = {10}, year = {2022}, abstract = {Etmopteridae (lantern sharks) is the most species-rich family of sharks, comprising more than 50 species. Many species are described from few individuals, and re-collection of specimens is often hindered by the remoteness of their sampling sites. For taxonomic studies, comparative morphological analysis of type specimens housed in natural history collections has been the main source of evidence. In contrast, DNA sequence information has rarely been used. Most lantern shark collection specimens, including the types, were formalin fixed before long-term storage in ethanol solutions. The DNA damage caused by both fixation and preservation of specimens has excluded these specimens from DNA sequence-based phylogenetic analyses so far. However, recent advances in the field of ancient DNA have allowed recovery of wet-collection specimen DNA sequence data. Here we analyse archival mitochondrial DNA sequences, obtained using ancient DNA approaches, of two wet-collection lantern shark paratype specimens, namely Etmopterus litvinovi and E. pycnolepis, for which the type series represent the only known individuals. Target capture of mitochondrial markers from single-stranded DNA libraries allows for phylogenetic placement of both species. Our results suggest synonymy of E. benchleyi with E. litvinovi but support the species status of E. pycnolepis. This revised taxonomy is helpful for future conservation and management efforts, as our results indicate a larger distribution range of E. litvinovi. This study further demonstrates the importance of wet-collection type specimens as genetic resource for taxonomic research.}, language = {en} } @article{HavermannGhirardoSchnitzleretal.2022, author = {Havermann, Felix and Ghirardo, Andrea and Schnitzler, J{\"o}rg-Peter and Nendel, Claas and Hoffmann, Mathias and Kraus, David and Grote, R{\"u}diger}, title = {Modeling intra- and interannual variability of BVOC emissions from maize, oil-seed rape, and ryegrass}, series = {Journal of advances in modeling earth systems}, volume = {14}, journal = {Journal of advances in modeling earth systems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1942-2466}, doi = {10.1029/2021MS002683}, pages = {22}, year = {2022}, abstract = {Air chemistry is affected by the emission of biogenic volatile organic compounds (BVOCs), which originate from almost all plants in varying qualities and quantities. They also vary widely among different crops, an aspect that has been largely neglected in emission inventories. In particular, bioenergy-related species can emit mixtures of highly reactive compounds that have received little attention so far. For such species, long-term field observations of BVOC exchange from relevant crops covering different phenological phases are scarcely available. Therefore, we measured and modeled the emission of three prominent European bioenergy crops (maize, ryegrass, and oil-seed rape) for full rotations in north-eastern Germany. Using a proton transfer reaction-mass spectrometer combined with automatically moving large canopy chambers, we were able to quantify the characteristic seasonal BVOC flux dynamics of each crop species. The measured BVOC fluxes were used to parameterize and evaluate the BVOC emission module (JJv) of the physiology-oriented LandscapeDNDC model, which was enhanced to cover de novo emissions as well as those from plant storage pools. Parameters are defined for each compound individually. The model is used for simulating total compound-specific reactivity over several years and also to evaluate the importance of these emissions for air chemistry. We can demonstrate substantial differences between the investigated crops with oil-seed rape having 37-fold higher total annual emissions than maize. However, due to a higher chemical reactivity of the emitted blend in maize, potential impacts on atmospheric OH-chemistry are only 6-fold higher.}, language = {en} } @article{RossoNendelGilardietal.2022, author = {Rosso, Pablo and Nendel, Claas and Gilardi, Nicolas and Udroiu, Cosmin and Chlebowski, Florent}, title = {Processing of remote sensing information to retrieve leaf area index in barley}, series = {Precision agriculture}, volume = {23}, journal = {Precision agriculture}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-2256}, doi = {10.1007/s11119-022-09893-4}, pages = {1449 -- 1472}, year = {2022}, abstract = {Leaf area index (LAI) is a key variable in understanding and modeling crop-environment interactions. With the advent of increasingly higher spatial resolution satellites and sensors mounted on remotely piloted aircrafts (RPAs), the use of remote sensing in precision agriculture is becoming more common. Since also the availability of methods to retrieve LAI from image data have also drastically expanded, it is necessary to test simultaneously as many methods as possible to understand the advantages and disadvantages of each approach. Ground-based LAI data from three years of barley experiments were related to remote sensing information using vegetation indices (VI), machine learning (ML) and radiative transfer models (RTM), to assess the relative accuracy and efficacy of these methods. The optimized soil adjusted vegetation index and a modified version of the Weighted Difference Vegetation Index performed slightly better than any other retrieval method. However, all methods yielded coefficients of determination of around 0.7 to 0.9. The best performing machine learning algorithms achieved higher accuracies when four Sentinel-2 bands instead of 12 were used. Also, the good performance of VIs and the satisfactory performance of the 4-band RTM, strongly support the synergistic use of satellites and RPAs in precision agriculture. One of the methods used, Sen2-Agri, an open source ML-RTM-based operational system, was also able to accurately retrieve LAI, although it is restricted to Sentinel-2 and Landsat data. This study shows the benefits of testing simultaneously a broad range of retrieval methods to monitor crops for precision agriculture.}, language = {en} } @article{ZhangCaoXuetal.2022, author = {Zhang, Naimeng and Cao, Xianyong and Xu, Qinghai and Huang, Xiaozhong and Herzschuh, Ulrike and Shen, Zhongwei and Peng, Wei and Liu, Sisi and Wu, Duo and Wang, Jian and Xia, Huan and Zhang, Dongju and Chen, Fahu}, title = {Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation}, series = {Catena}, volume = {210}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2021.105892}, pages = {14}, year = {2022}, abstract = {The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the late glacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3-13.1 kyr BP and 9-6.4 kyr BP) changed from shrub-steppe to coniferous forest-steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during 9.0-6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.}, language = {en} } @article{SchittkoOnandiaBernardVerdieretal.2022, author = {Schittko, Conrad and Onandia, Gabriela and Bernard-Verdier, Maud and Heger, Tina and Jeschke, Jonathan M. and Kowarik, Ingo and Maaß, Stefanie and Joshi, Jasmin}, title = {Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems}, series = {Journal of ecology}, volume = {110}, journal = {Journal of ecology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.13852}, pages = {916 -- 934}, year = {2022}, abstract = {Biodiversity in urban ecosystems has the potential to increase ecosystem functions and support a suite of services valued by society, including services provided by soils. Specifically, the sequestration of carbon in soils has often been advocated as a solution to mitigate the steady increase in CO2 concentration in the atmosphere as a key driver of climate change. However, urban ecosystems are also characterized by an often high level of ecological novelty due to profound human-mediated changes, such as the presence of high numbers of non-native species, impervious surfaces or other disturbances. Yet it is poorly understood whether and how biodiversity affects ecosystem functioning and services of urban soils under these novel conditions. In this study, we assessed the influence of above- and below-ground diversity, as well as urbanization and plant invasions, on multifunctionality and organic carbon stocks of soils in non-manipulated grasslands along an urbanization gradient in Berlin, Germany. We focused on plant diversity (measured as species richness and functional trait diversity) and, in addition, on soil organism diversity as a potential mediator for the relationship of plant species diversity and ecosystem functioning. Our results showed positive effects of plant diversity on soil multifunctionality and soil organic carbon stocks along the entire gradient. Structural equation models revealed that plant diversity enhanced soil multifunctionality and soil organic carbon by increasing the diversity of below-ground organisms. These positive effects of plant diversity on soil multifunctionality and soil fauna were not restricted to native plant species only, but were also exerted by non-native species, although to a lesser degree. Synthesis. We conclude that enhancing diversity in plants and soil fauna of urban grasslands can increase the multifunctionality of urban soils and also add to their often underestimated but very valuable role in mitigating effects of climate change.}, language = {en} } @article{IonescuBizicKarnataketal.2022, author = {Ionescu, Danny and Bizic, Mina and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Kasada, Minoru and Berger, Stella A. and Nejstgaard, Jens Christian and Ryo, Masahiro and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape}, series = {Ecological monographs}, volume = {92}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1523}, pages = {28}, year = {2022}, abstract = {Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (alpha- and beta-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.}, language = {en} } @article{MehnerAttermeyerBraunsetal.2022, author = {Mehner, Thomas and Attermeyer, Katrin and Brauns, Mario and Brothers, Soren and Hilt, Sabine and Scharnweber, Inga Kristin and Dorst, Renee Minavan and Vanni, Michael J. and Gaedke, Ursula}, title = {Trophic transfer efficiency in lakes}, series = {Ecosystems}, volume = {25}, journal = {Ecosystems}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1432-9840}, doi = {10.1007/s10021-022-00776-3}, pages = {1628 -- 1652}, year = {2022}, abstract = {Trophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes.}, language = {en} } @article{ZappaSchlafferBroccaetal.2022, author = {Zappa, Luca and Schlaffer, Stefan and Brocca, Luca and Vreugdenhil, Mariette and Nendel, Claas and Dorigo, Wouter}, title = {How accurately can we retrieve irrigation timing and water amounts from (satellite) soil moisture?}, series = {International journal of applied earth observation and geoinformation}, volume = {113}, journal = {International journal of applied earth observation and geoinformation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1569-8432}, doi = {10.1016/j.jag.2022.102979}, pages = {12}, year = {2022}, abstract = {While ensuring food security worldwide, irrigation is altering the water cycle and generating numerous environmental side effects. As detailed knowledge about the timing and the amounts of water used for irrigation over large areas is still lacking, remotely sensed soil moisture has proved potential to fill this gap. However, the spatial resolution and revisit time of current satellite products represent a major limitation to accurately estimating irrigation. This work aims to systematically quantify their impact on the retrieved irrigation information, hence assessing the value of satellite soil moisture for estimating irrigation timing and water amounts. In a real-world experiment, we modeled soil moisture using actual irrigation and meteorological data, obtained from farmers and weather stations, respectively. Modeled soil moisture was compared against various remotely sensed products differing in terms of spatio-temporal resolution to test the hypothesis that high-resolution observations can disclose the irrigation signal from individual fields while coarse-scale satellite products cannot. Then, in a synthetic experiment, we systematically investigated the effect of soil moisture spatial and temporal resolution on the accuracy of irrigation estimates. The analysis was further elaborated by considering different irrigation scenarios and by adding realistic amounts of random errors in the soil moisture time series. We show that coarse-scale remotely sensed soil moisture products achieve higher correlations with rainfed simulations, while high-resolution satellite observations agree significantly better with irrigated simulations, suggesting that high-resolution satellite soil moisture can inform on field-scale (similar to 40 ha) irrigation. A thorough analysis of the synthetic dataset showed that satisfactory results, both in terms of detection (F-score > 0.8) and quantification (Pearson's correlation > 0.8), are found for noise-free soil moisture observations either with a temporal sampling up to 3 days or if at least one-third of the pixel covers the irrigated field(s). However, irrigation water amounts are systematically underestimated for temporal samplings of more than one day, and decrease proportionally to the spatial resolution, i.e., coarsening the pixel size leads to larger irrigation underestimations. Although lower spatial and temporal resolutions decrease the detection and quantification accuracies (e.g., R between 0.6 and 1 depending on the irrigation rate and spatio-temporal resolution), random errors in the soil moisture time series have a stronger negative impact (Pearson R always smaller than 0.85). As expected, better performances are found for higher irrigation rates, i.e. when more water is supplied during an irrigation event. Despite the potentially large underestimations, our results suggest that high-resolution satellite soil moisture has the potential to track and quantify irrigation, especially over regions where large volumes of irrigation water are applied to the fields, and given that low errors affect the soil moisture observations.}, language = {en} } @article{HagbergCeleminIrisarrietal.2022, author = {Hagberg, Linda and Celemin, Enrique and Irisarri, Iker and Hawlitschek, Oliver and Bella, Jose L. and Mott, Tami and Pereira, Ricardo J.}, title = {Extensive introgression at late stages of species formation}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16406}, pages = {2384 -- 2399}, year = {2022}, abstract = {The process of species formation is characterized by the accumulation of multiple reproductive barriers. The evolution of hybrid male sterility, or Haldane's rule, typically characterizes later stages of species formation, when reproductive isolation is strongest. Yet, understanding how quickly reproductive barriers evolve and their consequences for maintaining genetic boundaries between emerging species remains a challenging task because it requires studying taxa that hybridize in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus, where populations that show multiple reproductive barriers, including hybrid male sterility, hybridize in two natural hybrid zones. Using mitochondrial data, we infer that such populations diverged some 100,000 years ago, at the beginning of the last glacial cycle in Europe. Nuclear data show that contractions at multiple glacial refugia, and post-glacial expansions have facilitated genetic differentiation between lineages that today interact in hybrid zones. We find extensive introgression throughout the sampled species range, irrespective of the current strength of reproductive isolation. Populations exhibiting hybrid male sterility in two hybrid zones show repeatable patterns of genomic differentiation, consistent with shared genomic constraints affecting ancestral divergence or with the role of those regions in reproductive isolation. Together, our results suggest that reproductive barriers that characterize late stages of species formation can evolve relatively quickly, particularly when associated with strong demographic changes. Moreover, we show that such barriers persist in the face of extensive gene flow, allowing future studies to identify associated genomic regions.}, language = {en} } @article{MoradianRochAnthoferetal.2022, author = {Moradian, Hanieh and Roch, Toralf and Anthofer, Larissa and Lendlein, Andreas and Gossen, Manfred}, title = {Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages}, series = {Molecular therapy}, volume = {27}, journal = {Molecular therapy}, publisher = {Cell Press}, address = {Cambridge}, issn = {2162-2531}, doi = {10.1016/j.omtn.2022.01.004}, pages = {854 -- 869}, year = {2022}, abstract = {In vitro transcribed (IVT)-mRNA has been accepted as a promising therapeutic modality. Advances in facile and rapid production technologies make IVT-mRNA an appealing alternative to protein- or virus-based medicines. Robust expression levels, lack of genotoxicity, and their manageable immunogenicity benefit its clinical applicability. We postulated that innate immune responses of therapeutically relevant human cells can be tailored or abrogated by combinations of 5'-end and internal IVT-mRNA modifications. Using primary human macrophages as targets, our data show the particular importance of uridine modifications for IVT-mRNA performance. Among five nucleotide modification schemes tested, 5-methoxy-uridine outperformed other modifications up to 4-fold increased transgene expression, triggering moderate proinflammatory and non-detectable antiviral responses. Macrophage responses against IVT-mRNAs exhibiting high immunogenicity (e.g., pseudouridine) could be minimized upon HPLC purification. Conversely, 5'-end modifications had only modest effects on mRNA expression and immune responses. Our results revealed how the uptake of chemically modified IVT-mRNA impacts human macrophages, responding with distinct patterns of innate immune responses concomitant with increased transient transgene expression. We anticipate our findings are instrumental to predictively address specific cell responses required for a wide range of therapeutic applications from eliciting controlled immunogenicity in mRNA vaccines to, e.g., completely abrogating cell activation in protein replacement therapies.}, language = {en} } @article{KamaliStellaBergMohnickeetal.2022, author = {Kamali, Bahareh and Stella, Tommaso and Berg-Mohnicke, Michael and Pickert, J{\"u}rgen and Groh, Jannis and Nendel, Claas}, title = {Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics}, series = {European journal of agronomy}, volume = {134}, journal = {European journal of agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2022.126464}, pages = {17}, year = {2022}, abstract = {The dynamics of grassland ecosystems are highly complex due to multifaceted interactions among their soil, water, and vegetation components. Precise simulations of grassland productivity therefore rely on accurately estimating a variety of parameters that characterize different processes of these systems. This study applied three calibration schemes - a Single-Objective (SO-SUFI2), a Multi-Objective Pareto (MO-Pareto), and, a novel Uncertainty-Based Multi-Objective (MO-SUFI2) - to estimate the parameters of MONICA (Model for Nitrogen and Carbon Simulation) agro-ecosystem model in grassland ecosystems across Germany. The MO-Pareto model is based on a traditional Pareto optimality concept, while the MO-SUFI2 optimizes multiple target variables considering their level of prediction uncertainty. We used measurements of leaf area index, aboveground biomass, and soil moisture from experimental data at five sites with different intensities of cutting regimes (from two to five cutting events per season) to evaluate model performance. Both MO-Pareto and MO-SUFI2 outperformed SO-SUFI2 during calibration and validation. The comparison of the two MO approaches shows that they do not necessarily conflict with each other, but MO-SUFI2 provides complementary information for better estimations of model parameter uncertainty. We used the obtained parameter ranges to simulate grassland productivity across Germany under different cutting regimes and quantified the uncertainty associated with estimated productivity across regions. The results showed higher uncertainty in intensively managed grasslands compared to extensively managed grasslands, partially due to a lack of high-resolution input information concerning cutting dates. Furthermore, the additional information on the quantified uncertainty provided by our proposed MO-SUFI2 method adds deeper insights on confidence levels of estimated productivity. Benefiting from additional management data collected at high resolution and ground measurements on the composition of grassland species mixtures appear to be promising solutions to reduce uncertainty and increase model reliability.}, language = {en} } @article{ZielhoferSchmidtReicheetal.2022, author = {Zielhofer, Christoph and Schmidt, Johannes and Reiche, Niklas and Tautenhahn, Marie and Ballasus, Helen and Burkart, Michael and Linst{\"a}dter, Anja and Dietze, Elisabeth and Kaiser, Knut and Mehler, Natascha}, title = {The lower Havel River Region (Brandenburg, Germany)}, series = {Water}, volume = {14}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14030480}, pages = {23}, year = {2022}, abstract = {Instrumental data show that the groundwater and lake levels in Northeast Germany have decreased over the past decades, and this process has accelerated over the past few years. In addition to global warming, the direct influence of humans on the local water balance is suspected to be the cause. Since the instrumental data usually go back only a few decades, little is known about the multidecadal to centennial-scale trend, which also takes long-term climate variation and the long-term influence by humans on the water balance into account. This study aims to quantitatively reconstruct the surface water areas in the Lower Havel Inner Delta and of adjacent Lake Gulpe in Brandenburg. The analysis includes the calculation of surface water areas from historical and modern maps from 1797 to 2020. The major finding is that surface water areas have decreased by approximately 30\% since the pre-industrial period, with the decline being continuous. Our data show that the comprehensive measures in Lower Havel hydro-engineering correspond with groundwater lowering that started before recent global warming. Further, large-scale melioration measures with increasing water demands in the upstream wetlands beginning from the 1960s to the 1980s may have amplified the decline in downstream surface water areas.}, language = {en} } @article{StelbrinkvonRintelenRichteretal.2022, author = {Stelbrink, Bj{\"o}rn and von Rintelen, Thomas and Richter, Kirsten and Finstermeier, Knut and Frahnert, Sylke and Cracraft, Joel and Hofreiter, Michael}, title = {Insights into the geographical origin and phylogeographical patterns of Paradisaea birds-of-paradise}, series = {Zoological journal of the Linnean Society}, volume = {196}, journal = {Zoological journal of the Linnean Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0024-4082}, doi = {10.1093/zoolinnean/zlac010}, pages = {1394 -- 1407}, year = {2022}, abstract = {Birds-of-paradise represent a textbook example for geographical speciation and sexual selection. Perhaps the most iconic genus is Paradisaea, which is restricted to New Guinea and a few surrounding islands. Although several species concepts have been applied in the past to disentangle the different entities within this genus, no attempt has been made so far to uncover phylogeographical patterns based on a genetic dataset that includes multiple individuals per species. Here, we applied amplicon sequencing for the mitochondrial fragment Cytb for a total of 69 museum specimens representing all seven Paradisaea species described and inferred both phylogenetic relationships and colonization pathways across the island. Our analyses show that the most recent common ancestor of the diverging lineages within Paradisaea probably originated in the Late Miocene in the eastern part of the Central Range and suggest that tectonic processes played a key role in shaping the diversification and distribution of species. All species were recovered as monophyletic, except for those within the apoda-minor-raggiana clade, which comprises the allopatric and parapatric species P. apoda, P. minor and P. raggiana. The comparatively young divergence times, together with possible instances of mitochondrial introgression and incomplete lineage sorting, suggest recent speciation in this clade.}, language = {en} } @article{AndreevNazarovaLenzetal.2022, author = {Andreev, Andrei and Nazarova, Larisa B. and Lenz, Marlene M. and B{\"o}hmer, Thomas and Syrykh, Ludmila and Wagner, Bernd and Melles, Martin and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia)}, series = {Journal of quaternary science : JQS}, volume = {37}, journal = {Journal of quaternary science : JQS}, number = {5}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0267-8179}, doi = {10.1002/jqs.3419}, pages = {884 -- 899}, year = {2022}, abstract = {Continuous pollen and chironomid records from Lake Emanda (65 degrees 17'N, 135 degrees 45'E) provide new insights into the Late Quaternary environmental history of the Yana Highlands (Yakutia). Larch forest with shrubs (alders, pines, birches) dominated during the deposition of the lowermost sediments suggesting its Early Weichselian [Marine Isotope Stage (MIS) 5] age. Pollen- and chironomid-based climate reconstructions suggest July temperatures (T-July) slightly lower than modern. Gradually increasing amounts of herb pollen and cold stenotherm chironomid head capsules reflect cooler and drier environments, probably during the termination of MIS 5. T-July dropped to 8 degrees C. Mostly treeless vegetation is reconstructed during MIS 3. Tundra and steppe communities dominated during MIS 2. Shrubs became common after similar to 14.5 ka BP but herb-dominated habitats remained until the onset of the Holocene. Larch forests with shrub alder and dwarf birch dominated after the Holocene onset, ca. 11.7 ka BP. Decreasing amounts of shrub pollen during the Lateglacial are assigned to the Older Dryas and Younger Dryas with T-July similar to 7.5 degrees C. T-July increased up to 13 degrees C. Shrub stone pine was present after similar to 7.5 ka BP. The vegetation has been similar to modern since ca. 5.8 ka BP. Chironomid diversity and concentration in the sediments increased towards the present day, indicating the development of richer hydrobiological communities in response to the Holocene thermal maximum.}, language = {en} } @article{SoutoVeigaGroeneveldEnrightetal.2022, author = {Souto-Veiga, Rodrigo and Groeneveld, Juergen and Enright, Neal J. and Fontaine, Joseph B. and Jeltsch, Florian}, title = {Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant}, series = {Plant ecology : an international journal}, volume = {223}, journal = {Plant ecology : an international journal}, number = {7}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-022-01244-7}, pages = {863 -- 881}, year = {2022}, abstract = {Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17\%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities.}, language = {en} } @article{BlickensdoerferSchwiederPflugmacheretal.2022, author = {Blickensd{\"o}rfer, Lukas and Schwieder, Marcel and Pflugmacher, Dirk and Nendel, Claas and Erasmi, Stefan and Hostert, Patrick}, title = {Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany}, series = {Remote sensing of environment : an interdisciplinary journal}, volume = {269}, journal = {Remote sensing of environment : an interdisciplinary journal}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2021.112831}, pages = {19}, year = {2022}, abstract = {Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data. Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and nondrought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6\% to 10\% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78\% and 80\%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping.}, language = {en} } @article{MalacrinoAbdelfattahBergetal.2022, author = {Malacrin{\`o}, Antonino and Abdelfattah, Ahmed and Berg, Gabriele and Benitez, Maria-Soledad and Bennett, Alison E. and B{\"o}ttner, Laura and Xu, Shuqing and Schena, Leonardo}, title = {Exploring microbiomes for plant disease management}, series = {Biological control : theory and application in pest management}, volume = {169}, journal = {Biological control : theory and application in pest management}, publisher = {Academic Press}, address = {San Diego, Calif.}, issn = {1049-9644}, doi = {10.1016/j.biocontrol.2022.104890}, pages = {7}, year = {2022}, abstract = {Microbiome science is revolutionizing many concepts of plant biology, ecology, and evolution. Understanding plant microbiomes is key to developing solutions that protect crop health without impacting the environment. In this perspective article, we highlight the importance of both the structure and functions of plant-associated microbial communities in protecting their host from pathogens. These new findings have a high potential to aid biocontrol programs and to replace traditional chemical products, guiding the transition towards a sustainable production.}, language = {en} } @article{JesusSchmidtFickeletal.2022, author = {Jesus, Sonia A. and Schmidt, Anke and Fickel, J{\"o}rns and Doherr, Marcus G. and Boonprasert, Khajohnpat and Thitaram, Chatchote and Sariya, Ladawan and Ratanakron, Parntep and Hildebrandt, Thomas Bernd}, title = {Assessing coagulation parameters in healthy Asian Elephants (Elephas maximus) from European and thai populations}, series = {Animals}, volume = {12}, journal = {Animals}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2076-2615}, doi = {10.3390/ani12030361}, pages = {16}, year = {2022}, abstract = {Simple Summary Asian elephants (Elephas maximus) are considered endangered and their population is in continuous decline. Understanding their social interactions, health, and welfare status has been a topic of intense research in recent decades. Coagulation assessments have been underutilized in wildlife but can give valuable information on individual health. This study aims to increase the knowledge of the coagulation status in healthy Asian elephants from different backgrounds and age groups, using a fast point-of-care analyzer. This tool can be further used in either routine health check-ups performed by caretakers or in a clinical emergency, such as in cases of elephant endotheliotropic herpesvirus hemorrhagic disease outbreaks. We have also investigated the presence of genomic mutations in one coagulation factor-factor VII-where a disorder was previously reported in an Asian elephant. Hereby, we report new reference values for coagulation parameters, such as coagulation times and fibrinogen concentration of Asian elephants assessed in Thailand and in Europe, as well as several single point mutations found in the exons of Elephas maximus coagulation F7 gene. We found the point-of-care analyzer used in this study to be very practical and user friendly for a zoo and field environment and hope that this project will incentivize further coagulation studies in Asian elephants and in other wildlife species. The Asian elephant population is continuously declining due to several extrinsic reasons in their range countries, but also due to diseases in captive populations worldwide. One of these diseases, the elephant endotheliotropic herpesvirus (EEHV) hemorrhagic disease, is very impactful because it particularly affects Asian elephant calves. It is commonly fatal and presents as an acute and generalized hemorrhagic syndrome. Therefore, having reference values of coagulation parameters, and obtaining such values for diseased animals in a very short time, is of great importance. We analyzed prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen concentrations using a portable and fast point-of-care analyzer (VetScan Pro) in 127 Asian elephants from Thai camps and European captive herds. We found significantly different PT and aPTT coagulation times between elephants from the two regions, as well as clear differences in fibrinogen concentration. Nevertheless, these alterations were not expected to have biological or clinical implications. We have also sequenced the coagulation factor VII gene of 141 animals to assess the presence of a previously reported hereditary coagulation disorder in Asian elephants and to investigate the presence of other mutations. We did not find the previously reported mutation in our study population. Instead, we discovered the presence of several new single nucleotide polymorphisms, two of them being considered as deleterious by effect prediction software.}, language = {en} } @article{WendtKulanekVargaetal.2022, author = {Wendt, Martin and Kulanek, Dustin and Varga, Zoltan and Rakosy, Laszlo and Schmitt, Thomas}, title = {Pronounced mito-nuclear discordance and various Wolbachia infections in the water ringlet Erebia pronoe have resulted in a complex phylogeographic structure}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-08885-8}, pages = {10}, year = {2022}, abstract = {Several morphological and mitochondrial lineages of the alpine ringlet butterfly species Erebia pronoe have been described, indicating a complex phylogenetic structure. However, the existing data were insufficient and allow neither a reconstruction of the biogeographic history, nor an assessment of the genetic lineages. Therefore, we analysed mitochondrial (COI, NDI) and nuclear (EF1 alpha, RPS5) gene sequences and compared them with sequences from the sister species Erebia melas. Additionally, we combined this information with morphometric data of the male genitalia and the infection patterns with Wolbachia strains, based on a WSP analysis. We obtained a distinct phylogeographic structure within the E. pronoe-melas complex with eight well-distinguishable geographic groups, but also a remarkable mito-nuclear discordance. The mito-nuclear discordance in E. melas and E. pronoe glottis can be explained by different ages of Wolbachia infections with different Wolbachia strains, associated selective sweeps, and hybridisation inhibition. Additionally, we found indications for incipient speciation of E. pronoe glottis in the Pyrenees and a pronounced range dynamic within and among the other high mountain systems of Europe. Our results emphasize the importance of combined approaches in reconstructing biogeographic patterns and evaluating phylogeographic splits.}, language = {en} } @article{GhoddousiVanCayzeeleNegahdaretal.2022, author = {Ghoddousi, Arash and Van Cayzeele, Corinna and Negahdar, Pegah and Soofi, Mahmood and Kh. Hamidi, Amirhossein and Bleyhl, Benjamin and Fandos, Guillermo and Khorozyan, Igor and Waltert, Matthias and Kuemmerle, Tobias}, title = {Understanding spatial patterns of poaching pressure using ranger logbook data to optimize future patrolling strategies}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {32}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1051-0761}, doi = {10.1002/eap.2601}, pages = {13}, year = {2022}, abstract = {Poaching is driving many species toward extinction, and as a result, lowering poaching pressure is a conservation priority. This requires understanding where poaching pressure is high and which factors determine these spatial patterns. However, the cryptic and illegal nature of poaching makes this difficult. Ranger patrol data, typically recorded in protected area logbooks, contain information on patrolling efforts and poaching detection and should thus provide opportunities for a better understanding of poaching pressure. However, these data are seldom analyzed and rarely used to inform adaptive management strategies. We developed a novel approach to making use of analog logbook records to map poaching pressure and to test environmental criminology and predator-prey relationship hypotheses explaining poaching patterns. We showcase this approach for Golestan National Park in Iran, where poaching has substantially depleted ungulate populations. We digitized data from >4800 ranger patrols from 2014 to 2016 and used an occupancy modeling framework to relate poaching to (1) accessibility, (2) law enforcement, and (3) prey availability factors. Based on predicted poaching pressure and patrolling intensity, we provide suggestions for future patrol allocation strategies. Our results revealed a low probability (12\%) of poacher detection during patrols. Poaching distribution was best explained by prey availability, indicating that poachers target areas with high concentrations of ungulates. Poaching pressure was estimated to be high (>0.49) in 39\% of our study area. To alleviate poaching pressure, we recommend ramping up patrolling intensity in 12\% of the national park, which could be achievable by reducing excess patrols in about 20\% of the park. However, our results suggest that for 27\% of the park, it is necessary to improve patrolling quality to increase detection probability of poaching, for example, by closing temporal patrolling gaps or expanding informant networks. Our approach illustrates that analog ranger logbooks are an untapped resource for evidence-based and adaptive planning of protected area management. Using this wealth of data can open up new avenues to better understand poaching and its determinants, to expand effectiveness assessments to the past, and, more generally, to allow for strategic conservation planning in protected areas.}, language = {en} } @article{ZoccaratoSherMikietal.2022, author = {Zoccarato, Luca and Sher, Daniel and Miki, Takeshi and Segre, Daniel and Grossart, Hans-Peter}, title = {A comparative whole-genome approach identifies bacterial traits for marine microbial interactions}, series = {Communications biology}, volume = {5}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {2399-3642}, doi = {10.1038/s42003-022-03184-4}, pages = {13}, year = {2022}, abstract = {Luca Zoccarato, Daniel Sher et al. leverage publicly available bacterial genomes from marine and other environments to examine traits underlying microbial interactions. Their results provide a valuable resource to investigate clusters of functional and linked traits to better understand marine bacteria community assembly and dynamics. Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10\% of genomes), phytohormones (3-8\%) and different B vitamins (57-70\%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.}, language = {en} } @article{StoofLeichsenringHuangLiuetal.2022, author = {Stoof-Leichsenring, Kathleen R. and Huang, Sichao and Liu, Sisi and Jia, Weihan and Li, Kai and Liu, Xingqi and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high-latitude and high-elevation lakes in Siberia and China}, series = {Limnology and oceanography}, volume = {67}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0024-3590}, doi = {10.1002/lno.12061}, pages = {1126 -- 1141}, year = {2022}, abstract = {Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long-term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface-sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface-sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12 degrees C and conductivity ranges between 40 and 400 mu S cm(-1). Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late-glacial and Mid-Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake-hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{ReeveNicholsonAltafetal.2022, author = {Reeve, Holly A. and Nicholson, Jake and Altaf, Farieha and Lonsdale, Thomas H. and Preissler, Janina and Lauterbach, Lars and Lenz, Oliver and Leimk{\"u}hler, Silke and Hollmann, Frank and Paul, Caroline E. and Vincent, Kylie A.}, title = {A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H}, series = {Chemical communications : ChemComm}, volume = {58}, journal = {Chemical communications : ChemComm}, number = {75}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc02411j}, pages = {10540 -- 10543}, year = {2022}, abstract = {We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H-2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50\% activity after 7 h.}, language = {en} } @article{KrebsRakotoarinoroStechetal.2022, author = {Krebs, Simon K. and Rakotoarinoro, Nathanael and Stech, Marlitt and Zemella, Anne and Kubick, Stefan}, title = {A CHO-based cell-free dual fluorescence reporter system for the straightforward assessment of amber suppression and scFv functionality}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.873906}, pages = {15}, year = {2022}, abstract = {Incorporation of noncanonical amino acids (ncAAs) with bioorthogonal reactive groups by amber suppression allows the generation of synthetic proteins with desired novel properties. Such modified molecules are in high demand for basic research and therapeutic applications such as cancer treatment and in vivo imaging. The positioning of the ncAA-responsive codon within the protein's coding sequence is critical in order to maintain protein function, achieve high yields of ncAA-containing protein, and allow effective conjugation. Cell-free ncAA incorporation is of particular interest due to the open nature of cell-free systems and their concurrent ease of manipulation. In this study, we report a straightforward workflow to inquire ncAA positions in regard to incorporation efficiency and protein functionality in a Chinese hamster ovary (CHO) cell-free system. As a model, the well-established orthogonal translation components Escherichia coli tyrosyl-tRNA synthetase (TyrRS) and tRNATyr(CUA) were used to site-specifically incorporate the ncAA p-azido-l-phenylalanine (AzF) in response to UAG codons. A total of seven ncAA sites within an anti-epidermal growth factor receptor (EGFR) single-chain variable fragment (scFv) N-terminally fused to the red fluorescent protein mRFP1 and C-terminally fused to the green fluorescent protein sfGFP were investigated for ncAA incorporation efficiency and impact on antigen binding. The characterized cell-free dual fluorescence reporter system allows screening for ncAA incorporation sites with high incorporation efficiency that maintain protein activity. It is parallelizable, scalable, and easy to operate. We propose that the established CHO-based cell-free dual fluorescence reporter system can be of particular interest for the development of antibody-drug conjugates (ADCs).}, language = {en} } @article{KuehnBeckerHarpkeetal.2022, author = {K{\"u}hn, Elisabeth and Becker, Marc and Harpke, Alexander and K{\"u}hn, Ingolf and Kuhlicke, Christian and Schmitt, Thomas and Settele, Josef and Musche, Martin}, title = {The benefits of counting butterflies: recommendations for a successful citizen science project}, series = {Ecology and Society}, volume = {27}, journal = {Ecology and Society}, number = {2}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-12861-270238}, pages = {39}, year = {2022}, abstract = {Citizen science (CS) projects, being popular across many fields of science, have recently also become a popular tool to collect biodiversity data. Although the benefits of such projects for science and policy making are well understood, relatively little is known about the benefits participants get from these projects as well as their personal backgrounds and motivations. Furthermore, very little is known about their expectations. We here examine these aspects, with the citizen science project "German Butterfly Monitoring" as an example. A questionnaire was sent to all participants of the project and the responses to the questionnaire indicated the following: center dot Most transect walkers do not have a professional background in this field, though they do have a high educational level, and are close to retirement, with a high number of females; center dot An important motivation to join the project is to preserve the natural environment and to contribute to scientific knowledge; center dot Participants benefit by enhancing their knowledge about butterflies and especially their ability to identify different species (taxonomic knowledge); center dot Participants do not have specific expectations regarding the project beyond proper management and coordination, but have an intrinsic sense of working for a greater good. The willingness to join a project is higher if the project contributes to the solution of a problem discussed in the media (here, insect decline). Based on our findings from the analysis of the questionnaire we can derive a set of recommendations for establishing a successful CS project. These include the importance of good communication, e.g., by explaining what the (scientific) purpose of the project is and what problems are to be solved with the help of the data collected in the project. The motivation to join a CS project is mostly intrinsic and CS is a good tool to engage people during difficult times such as the COVID-19 pandemic, giving participants the feeling of doing something useful.}, language = {en} } @article{HabelUlrichEberleetal.2022, author = {Habel, Jan Christian and Ulrich, Werner and Eberle, Jonas and Schmitt, Thomas}, title = {Species community structures of Afrotropical butterflies differ depending on the monitoring method}, series = {Biodiversity and conservation}, volume = {31}, journal = {Biodiversity and conservation}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-021-02332-2}, pages = {245 -- 259}, year = {2022}, abstract = {Standardised biodiversity assessment is crucial to understand community structures and population dynamics of animals. There exist various methods to monitor biodiversity. Approaches differ depending on the target species group and the aim of study, and show advantages and disadvantages. The obtained data and results are influenced by local environmental conditions and seasonal variability. In a comparative approach, we studied butterfly diversity and community structure in the dryland savannah biome of south-eastern Kenya with two different methods, transect counts and bait trapping. We repeatedly collected data throughout the dry and rainy seasons, in both near natural and anthropogenically influenced landscapes. Significantly more species and individuals were recorded by transect counts than by bait trapping, though the larger and more mobile Nymphalid species (and in particular representatives of the genus Charaxes) were comparatively overrepresented in traps. The transect data revealed much more pronounced effects of land-use and seasonality than the trap data. These results show that the choice of data collection methods must depend on the general research question, habitat conditions and season. To study the relative variation of species diversity and abundance, the collection of a fraction of the total species diversity might be sufficient. However, if the focus is on a largely complete recording of species diversity, the use of various collection methods is essential. More specifically, our data clearly demonstrate that transect counts represent a reasonable method for assessing butterfly diversity for the African dryland savannah region, but fails to fully capture occurrences of all species. Bait trapping can be used only as a supplementary method for assessing some few highly mobile low-density species.}, language = {en} } @article{MbebiBreitlerBordeauxetal.2022, author = {Mbebi, Alain J. and Breitler, Jean-Christophe and Bordeaux, M'elanie and Sulpice, Ronan and McHale, Marcus and Tong, Hao and Toniutti, Lucile and Castillo, Jonny Alonso and Bertrand, Benoit and Nikoloski, Zoran}, title = {A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids}, series = {G3: Genes, genomes, genetics}, volume = {12}, journal = {G3: Genes, genomes, genetics}, number = {9}, publisher = {Genetics Soc. of America}, address = {Pittsburgh, PA}, issn = {2160-1836}, doi = {10.1093/g3journal/jkac170}, pages = {11}, year = {2022}, abstract = {Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.}, language = {en} } @article{HeimLisovskiWieczoreketal.2022, author = {Heim, Birgit and Lisovski, Simeon and Wieczorek, Mareike and Morgenstern, Anne and Juhls, Bennet and Shevtsova, Iuliia and Kruse, Stefan and Boike, Julia and Fedorova, Irina and Herzschuh, Ulrike}, title = {Spring snow cover duration and tundra greenness in the Lena Delta, Siberia}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac8066}, pages = {18}, year = {2022}, abstract = {The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The 'regular year' snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 degrees C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic.}, language = {en} } @article{MontesOsunaCernavaGomezLamaCabanasetal.2022, author = {Montes-Osuna, Nuria and Cernava, Tomislav and Gomez-Lama Cabanas, Carmen and Berg, Gabriele and Mercado-Blanco, Jesus}, title = {Identification of volatile organic compounds emitted by two beneficial endophytic pseudomonas strains from olive roots}, series = {Plants}, volume = {11}, journal = {Plants}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2223-7747}, doi = {10.3390/plants11030318}, pages = {14}, year = {2022}, abstract = {The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is able to promote the growth of barley and Arabidopsis thaliana, VOCs being involved in the growth of the latter species. In this study, the antagonistic capacity of these endophytic bacteria against relevant phytopathogens (Verticillium spp., Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum f.sp. lycopersici) was assessed. Under in vitro conditions, PICF6 and PICF7 were only able to antagonize representative isolates of V. dahliae and V. longisporum. Remarkably, both strains produced an impressive portfolio of up to twenty VOCs, that included compounds with reported antifungal (e.g., 1-undecene, (methyldisulfanyl) methane and 1-decene) or plant growth promoting (e.g., tridecane, 1-decene) activities. Moreover, their volatilomes differed strongly in the absence and presence of V. dahliae. For example, when co incubated with the defoliating pathotype of V. dahliae, the antifungal compound 4-methyl-2,6-bis(2-methyl-2-propanyl)phenol was produced. Results suggest that volatiles emitted by these endophytes may differ in their modes of action, and that potential benefits for the host needs further investigation in planta.}, language = {en} } @article{MannaZoccaratoBanchietal.2022, author = {Manna, Vincenzo and Zoccarato, Luca and Banchi, Elisa and Arnosti, Carol and Grossart, Hans-Peter and Celussi, Mauro}, title = {Linking lifestyle and foraging strategies of marine bacteria}, series = {Environmental microbiology reports}, volume = {14}, journal = {Environmental microbiology reports}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.13059}, pages = {549 -- 558}, year = {2022}, abstract = {Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.}, language = {en} } @article{MinutilloRuanoRosaAbdelfattahetal.2022, author = {Minutillo, Serena A. and Ruano-Rosa, David and Abdelfattah, Ahmed and Schena, Leonardo and Malacrino, Antonino}, title = {The fungal microbiome of wheat flour includes potential mycotoxin producers}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050676}, pages = {9}, year = {2022}, abstract = {Consumers are increasingly demanding higher quality and safety standards for the products they consume, and one of this is wheat flour, the basis of a wide variety of processed products. This major component in the diet of many communities can be contaminated by microorganisms before the grain harvest, or during the grain storage right before processing. These microorganisms include several fungal species, many of which produce mycotoxins, secondary metabolites that can cause severe acute and chronic disorders. Yet, we still know little about the overall composition of fungal communities associated with wheat flour. In this study, we contribute to fill this gap by characterizing the fungal microbiome of different types of wheat flour using culture-dependent and -independent techniques. Qualitatively, these approaches suggested similar results, highlighting the presence of several fungal taxa able to produce mycotoxins. In-vitro isolation of fungal species suggest a higher frequency of Penicillium, while metabarcoding suggest a higher abundance of Alternaria. This discrepancy might reside on the targeted portion of the community (alive vs. overall) or in the specific features of each technique. Thus, this study shows that commercial wheat flour hosts a wide fungal diversity with several taxa potentially representing concerns for consumers, aspects that need more attention throughout the food production chain.}, language = {en} } @article{WassermannAbdelfattahWicaksonoetal.2022, author = {Wassermann, Birgit and Abdelfattah, Ahmed and Wicaksono, Wisnu Adi and Kusstatscher, Peter and M{\"u}ller, Henry and Cernava, Tomislav and Goertz, Simon and Rietz, Steffen and Abbadi, Amine and Berg, Gabriele}, title = {The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines}, series = {Microbial biotechnology}, volume = {15}, journal = {Microbial biotechnology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1751-7915}, doi = {10.1111/1751-7915.14077}, pages = {2379 -- 2390}, year = {2022}, abstract = {Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant-related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes.}, language = {en} } @article{DreymannWuenscheSabrowskietal.2022, author = {Dreymann, Nico and Wuensche, Julia and Sabrowski, Wiebke and Moeller, Anja and Czepluch, Denise and Vu Van, Dana and F{\"u}ssel, Susanne and Menger, Marcus M.}, title = {Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1661-6596}, doi = {10.3390/ijms23094890}, pages = {22}, year = {2022}, abstract = {Urokinase-type plasminogen activator is widely discussed as a marker for cancer prognosis and diagnosis and as a target for cancer therapies. Together with its receptor, uPA plays an important role in tumorigenesis, tumor progression and metastasis. In the present study, systematic evolution of ligands by exponential enrichment (SELEX) was used to select single-stranded DNA aptamers targeting different forms of human uPA. Selected aptamers allowed the distinction between HMW-uPA and LMW-uPA, and therefore, presumably, have different binding regions. Here, uPAapt-02-FR showed highly affine binding with a K-D of 0.7 nM for HMW-uPA and 21 nM for LMW-uPA and was also able to bind to pro-uPA with a K-D of 14 nM. Furthermore, no cross-reactivity to mouse uPA or tissue-type plasminogen activator (tPA) was measured, demonstrating high specificity. Suppression of the catalytic activity of uPA and inhibition of uPAR-binding could be demonstrated through binding with different aptamers and several of their truncated variants. Since RNA aptamers are already known to inhibit uPA-uPAR binding and other pathological functions of the uPA system, these aptamers represent a novel, promising tool not only for detection of uPA but also for interfering with the pathological functions of the uPA system by additionally inhibiting uPA activity.}, language = {en} } @article{ZhangHuYangetal.2022, author = {Zhang, Kai and Hu, Jiege and Yang, Shuai and Xu, Wei and Wang, Zhichao and Zhuang, Peiwen and Grossart, Hans-Peter and Luo, Zhuhua}, title = {Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1}, series = {Journal of hazardous materials}, volume = {437}, journal = {Journal of hazardous materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3894}, doi = {10.1016/j.jhazmat.2022.129406}, pages = {10}, year = {2022}, abstract = {Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80\% of Impranil PU after 3 days of incubation at 28 celcius by breaking the carbonyl groups (1732 cm(-1)) and C-N-H bonds (1532 cm(-1) and 1247 cm(-1)) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation " was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.}, language = {en} } @article{RaffeinerUestuenGuerraetal.2022, author = {Raffeiner, Margot and {\"U}st{\"u}n, Suayib and Guerra, Tiziana and Spinti, Daniela and Fitzner, Maria and Sonnewald, Sophia and Baldermann, Susanne and B{\"o}rnke, Frederik}, title = {The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum)}, series = {The plant cell}, volume = {34}, journal = {The plant cell}, number = {5}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1040-4651}, doi = {10.1093/plcell/koac032}, pages = {1684 -- 1708}, year = {2022}, abstract = {As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.}, language = {en} } @article{HanniganNendelKrull2022, author = {Hannigan, Sara and Nendel, Claas and Krull, Marcos}, title = {Effects of temperature on the movement and feeding behaviour of the large lupine beetle, Sitona gressorius}, series = {Journal of pest science}, journal = {Journal of pest science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4758}, doi = {10.1007/s10340-022-01510-7}, pages = {389 -- 402}, year = {2022}, abstract = {Even though the effects of insect pests on global agricultural productivity are well recognised, little is known about movement and dispersal of many species, especially in the context of global warming. This work evaluates how temperature and light conditions affect different movement metrics and the feeding rate of the large lupine beetle, an agricultural pest responsible for widespread damage in leguminous crops. By using video recordings, the movement of 384 beetles was digitally analysed under six different temperatures and light conditions in the laboratory. Bayesian linear mixed-effect models were used to analyse the data. Furthermore, the effects of temperature on the daily diffusion coefficient of beetles were estimated by using hidden Markov models and random walk simulations. Results of this work show that temperature, light conditions, and beetles' weight were the main factors affecting the flight probability, displacement, time being active and the speed of beetles. Significant variations were also observed in all evaluated metrics. On average, beetles exposed to light conditions and higher temperatures had higher mean speed and flight probability. However, beetles tended to stay more active at higher temperatures and less active at intermediate temperatures, around 20 degrees C. Therefore, both the diffusion coefficient and displacement of beetles were lower at intermediate temperatures. These results show that the movement behaviour and feeding rates of beetles can present different relationships in the function of temperature. It also shows that using a single diffusion coefficient for insects in spatially explicit models may lead to over- or underestimation of pest spread.}, language = {en} } @article{HilgersHartmannPfaenderetal.2022, author = {Hilgers, Leon and Hartmann, Stefanie and Pfaender, Jobst and Lentge-Maass, Nora and Marwoto, Ristiyanti M. and von Rintelen, Thomas and Hofreiter, Michael}, title = {Evolutionary divergence and radula diversification in two ecomorphs from an adaptive radiation of freshwater snails}, series = {Genes}, volume = {13}, journal = {Genes}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes13061029}, pages = {16}, year = {2022}, abstract = {(1) Background: Adaptive diversification of complex traits plays a pivotal role in the evolution of organismal diversity. In the freshwater snail genus Tylomelania, adaptive radiations were likely promoted by trophic specialization via diversification of their key foraging organ, the radula. (2) Methods: To investigate the molecular basis of radula diversification and its contribution to lineage divergence, we used tissue-specific transcriptomes of two sympatric Tylomelania sarasinorum ecomorphs. (3) Results: We show that ecomorphs are genetically divergent lineages with habitat-correlated abundances. Sequence divergence and the proportion of highly differentially expressed genes are significantly higher between radula transcriptomes compared to the mantle and foot. However, the same is not true when all differentially expressed genes or only non-synonymous SNPs are considered. Finally, putative homologs of some candidate genes for radula diversification (hh, arx, gbb) were also found to contribute to trophic specialization in cichlids and Darwin's finches. (4) Conclusions: Our results are in line with diversifying selection on the radula driving Tylomelania ecomorph divergence and indicate that some molecular pathways may be especially prone to adaptive diversification, even across phylogenetically distant animal groups.}, language = {en} } @article{PerkinsSantosRoseetal.2022, author = {Perkins, Anita K. and Santos, Isaac R. and Rose, Andrew L. and Schulz, Kai G. and Grossart, Hans-Peter and Eyre, Bradley D. and Kelaher, Brendan P. and Oakes, Joanne M.}, title = {Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches}, series = {Biogeochemistry}, volume = {160}, journal = {Biogeochemistry}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0168-2563}, doi = {10.1007/s10533-022-00946-4}, pages = {159 -- 175}, year = {2022}, abstract = {Marine macroalgae are a key primary producer in coastal ecosystems, but are often overlooked in blue carbon inventories. Large quantities of macroalgal detritus deposit on beaches, but the fate of wrack carbon (C) is little understood. If most of the wrack carbon is respired back to CO2, there would be no net carbon sequestration. However, if most of the wrack carbon is converted to bicarbonate (alkalinity) or refractory DOC, wrack deposition would represent net carbon sequestration if at least part of the metabolic products (e.g., reduced Fe and S) are permanently removed (i.e., long-term burial) and the DOC is not remineralised. To investigate the release of macroalgal C via porewater and its potential to contribute to C sequestration (blue carbon), we monitored the degradation of Ecklonia radiata in flow-through mesocosms simulating tidal flushing on sandy beaches. Over 60 days, 81\% of added E. radiata organic matter (OM) decomposed. Per 1 mol of detritus C, the degradation produced 0.48 +/- 0.34 mol C of dissolved organic carbon (DOC) (59\%) and 0.25 +/- 0.07 mol C of dissolved inorganic carbon (DIC) (31\%) in porewater, and a small amount of CO2 (0.3 +/- 0.0 mol C; ca. 3\%) which was emitted to the atmosphere. A significant amount of carbonate alkalinity was found in porewater, equating to 33\% (0.27 +/- 0.05 mol C) of the total degraded C. The degradation occurred in two phases. In the first phase (days 0-3), 27\% of the OM degraded, releasing highly reactive DOC. In the second phase (days 4-60), the labile DOC was converted to DIC. The mechanisms underlying E. radiata degradation were sulphate reduction and ammonification. It is likely that the carbonate alkalinity was primarily produced through sulphate reduction. The formation of carbonate alkalinity and semi-labile or refractory DOC from beach wrack has the potential to play an overlooked role in coastal carbon cycling and contribute to marine carbon sequestration.}, language = {en} } @article{HussJuddKoperetal.2022, author = {Huß, Sebastian and Judd, Rika Siedah and Koper, Kaan and Maeda, Hiroshi A. and Nikoloski, Zoran}, title = {An automated workflow that generates atom mappings for large-scale metabolic models and its application to Arabidopsis thaliana}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0960-7412}, doi = {10.1111/tpj.15903}, pages = {1486 -- 1500}, year = {2022}, abstract = {Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating N-15 isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future N-15-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.}, language = {en} } @article{OstermannMiyashitaKoenigPernatetal.2022, author = {Ostermann-Miyashita, Emu-Felicitas and K{\"o}nig, Hannes J. and Pernat, Nadja and Bellingrath-Kimura, Sonoko Dorothea and Hibler, Sophia and Kiffner, Christian}, title = {Knowledge of returning wildlife species and willingness to participate in citizen science projects among wildlife park visitors in Germany}, series = {People and nature}, volume = {4}, journal = {People and nature}, number = {5}, publisher = {British Ecological Society; Wiley}, address = {London; Hoboken, NJ}, issn = {2575-8314}, doi = {10.1002/pan3.10379}, pages = {1201 -- 1215}, year = {2022}, abstract = {Successful conservation efforts have led to recent increases of large mammals such as European bison Bison bonasus, moose Alces alces and grey wolf Canis lupus and their return to former habitats in central Europe. While embraced by some, the recovery of these species is a controversial topic and holds potential for human-wildlife conflicts. Involving the public has been suggested to be an effective method for monitoring wildlife and mitigating associated conflicts. To assess two interrelated prerequisites for engaging people in Citizen Science (CS)-knowledge of returning species and respondents' readiness to participate in CS activities for monitoring and managing these species-we conducted a survey (questionnaire) in two wildlife parks located in different states of Germany. Based on 472 complete questionnaires, we developed generalized linear models to understand how sociodemographic variables and exposure to the species affected visitors' knowledge of each species, and to investigate if sociodemographic variables and knowledge influenced the likelihood of visitors to participate in CS activities. Almost all visitors were aware of the returning wolf population, while knowledge and awareness about bison and moose were significantly lower. Knowledge of the two herbivores differed geographically (higher knowledge of moose in the north-eastern state), possibly indicating a positive association between exposure to the species and knowledge. However, models generally performed poorly in predicting knowledge about wildlife, suggesting that such specific knowledge is insufficiently explained by sociodemographic variables. Our model, which explained stated willingness in CS indicated that younger participants and those with higher knowledge scores in the survey were more willing to engage in CS activities. Overall, our analyses highlight how exposure to large mammals, knowledge about wildlife and human demographics are interrelated-insights that are helpful for effectively recruiting citizen scientists for wildlife conservation. Read the free Plain Language Summary for this article on the Journal blog.}, language = {en} } @article{PotenteLeveilleBourretYousefietal.2022, author = {Potente, Giacomo and L{\´e}veill{\´e}-Bourret, {\´E}tienne and Yousefi, Narjes and Choudhury, Rimjhim Roy and Keller, Barbara and Diop, Seydina Issa and Duijsings, Dani{\"e}l and Pirovano, Walter and Lenhard, Michael and Sz{\"o}v{\´e}nyi, P{\´e}ter and Conti, Elena}, title = {Comparative genomics elucidates the origin of a supergene controlling floral heteromorphism}, series = {Molecular biology and evolution : MBE}, volume = {39}, journal = {Molecular biology and evolution : MBE}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msac035}, pages = {16}, year = {2022}, abstract = {Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?}, language = {en} } @article{LucenaPerezBazzicalupoPaijmansetal.2022, author = {Lucena-Perez, Mar{\´i}a and Bazzicalupo, Enrico and Paijmans, Johanna and Kleinman-Ruiz, Daniel and Dal{\´e}n, Love and Hofreiter, Michael and Delibes, Miguel and Clavero, Miguel and Godoy, Jos{\´e} A.}, title = {Ancient genome provides insights into the history of Eurasian lynx in Iberia and Western Europe}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {285}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107518}, pages = {9}, year = {2022}, abstract = {The Eurasian lynx (Lynx lynx) is one of the most widely distributed felids in the world. However, most of its populations started to decline a few millennia ago. Historical declines have been especially severe in Europe, and particularly in Western Europe, from where the species disappeared in the last few centuries. Here, we analyze the genome of an Eurasian lynx inhabiting the Iberian Peninsula 2500 ya, to gain insights into the phylogeographic position and genetic status of this extinct population. Also, we contextualize previous ancient data in the light of new phylogeographic studies of the species. Our results suggest that the Iberian population is part of an extinct European lineage closely related to the current Carpathian-Baltic lineages. Also, this sample holds the lowest diversity reported for the species so far, and similar to that of the highly endangered Iberian lynx. A combination of historical factors, such as a founder effect while colonizing the peninsula, together with intensified human impacts during the Holocene in the Cantabrian strip, could have led to a genetic impoverishment of the population and precipitated its extinction. Mitogenomic lineages distribution in space and time support the long-term coexistence of several lineages of Eurasian lynx in Western Europe with fluctuating ranges. While mitochondrial sequences related to the lineages currently found in Balkans and Caucasus were predominant during the Pleistocene, those more closely related to the lineage currently distributed in Central Europe prevailed during the Holocene. The use of ancient genomics has proven to be a useful tool to understand the biogeographic pattern of the Eurasian lynx in the past.}, language = {en} } @article{EscalanteDominguezGomezRuizetal.2022, author = {Escalante, Ignacio and Dominguez, Marisol and Gomez-Ruiz, Daisy Alejandra and Machado, Glauco}, title = {Benefits and costs of mixed-species aggregations in Harvestmen (Arachnida: Opiliones)}, series = {Frontiers in ecology and evolution}, volume = {9}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.766323}, pages = {24}, year = {2022}, abstract = {Many animals form aggregations with individuals of the same species (single-species aggregations, SSA). Less frequently, individuals may also aggregate with individuals of other species (mixed-species aggregations, MSA). Although the benefits and costs of SSA have been intensively studied, the same is not true for MSA. Here, we first review the cases of MSA in harvestmen, an arachnid order in which the records of MSA are more frequent than other arthropod orders. We then propose several benefits and costs of MSA in harvestmen, and contrast them with those of SSA. Second, using field-gathered data we describe gregariousness in seven species of Prionostemma harvestmen from Costa Rica. These species form MSA, but individuals are also found solitarily or in SSA. We tested one possible benefit and one possible cost of gregariousness in Prionostemma harvestmen. Regarding the benefit, we hypothesized that individuals missing legs would be more exposed to predation than eight-legged individuals and thus they should be found preferentially in aggregations, where they would be more protected from predators. Our data, however, do not support this hypothesis. Regarding the cost, we hypothesized that gregariousness increases the chances of parasitism. We found no support for this hypothesis either because both mite prevalence and infestation intensity did not differ between solitary or aggregated individuals. Additionally, the type of aggregation (SSA or MSA) was not associated with the benefit or the cost we explored. This lack of effect may be explained by the fluid membership of the aggregations, as we found high turnover over time in the number of individuals and species composition of the aggregations. In conclusion, we hope our review and empirical data stimulate further studies on MSA, which remains one of the most elusive forms of group living in animals.}, language = {en} } @article{KrumbholzIshidaBaunachetal.2022, author = {Krumbholz, Julia and Ishida, Keishi and Baunach, Martin and Teikari, Jonna and Rose, Magdalena M. and Sasso, Severin and Hertweck, Christian and Dittmann, Elke}, title = {Deciphering chemical mediators regulating specialized metabolism in a symbiotic cyanobacterium}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202204545}, pages = {10}, year = {2022}, abstract = {Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.}, language = {en} } @article{LiPostlBoehmeretal.2022, author = {Li, Chenzhi and Postl, Alexander K. and B{\"o}hmer, Thomas and Cao, Xianyong and Dolman, Andrew M. and Herzschuh, Ulrike}, title = {Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {3}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-14-1331-2022}, pages = {1331 -- 1343}, year = {2022}, abstract = {We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 \%), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8\% of records), reservoir effect (4.9 \%), and sediment deposition discontinuity (4.4 \%). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4\% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively.}, language = {en} } @article{IrobBlaumBaldaufetal.2022, author = {Irob, Katja and Blaum, Niels and Baldauf, Selina and Kerger, Leon and Strohbach, Ben and Kanduvarisa, Angelina and Lohmann, Dirk and Tietjen, Britta}, title = {Browsing herbivores improve the state and functioning of savannas}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8715}, pages = {19}, year = {2022}, abstract = {Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.}, language = {en} } @article{GhafarianWielandLuettschwageretal.2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and L{\"u}ttschwager, Dietmar and Nendel, Claas}, title = {Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data}, series = {Environmental modelling \& software with environment data news}, volume = {156}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2022.105466}, pages = {11}, year = {2022}, abstract = {Forest microclimate can buffer biotic responses to summer heat waves, which are expected to become more extreme under climate warming. Prediction of forest microclimate is limited because meteorological observation standards seldom include situations inside forests. We use eXtreme Gradient Boosting - a Machine Learning technique - to predict the microclimate of forest sites in Brandenburg, Germany, using seasonal data comprising weather features. The analysis was amended by applying a SHapley Additive explanation to show the interaction effect of variables and individualised feature attributions. We evaluate model performance in comparison to artificial neural networks, random forest, support vector machine, and multi-linear regression. After implementing a feature selection, an ensemble approach was applied to combine individual models for each forest and improve robustness over a given single prediction model. The resulting model can be applied to translate climate change scenarios into temperatures inside forests to assess temperature-related ecosystem services provided by forests.}, language = {en} } @article{MitzscherlingMacLeanLipusetal.2022, author = {Mitzscherling, Julia and MacLean, Joana and Lipus, Daniel and Bartholom{\"a}us, Alexander and Mangelsdorf, Kai and Lipski, Andr{\´e} and Roddatis, Vladimir and Liebner, Susanne and Wagner, Dirk}, title = {Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste}, series = {International journal of systematic and evolutionary microbiology}, volume = {72}, journal = {International journal of systematic and evolutionary microbiology}, number = {4}, publisher = {Microbiology Society}, address = {London}, issn = {1466-5026}, doi = {10.1099/ijsem.0.005319}, pages = {11}, year = {2022}, abstract = {Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1\% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6\%) and Nocardioides dubius KSL-104(T) (98.3\%). The genomic DNA G+C content of strain NGK65(T) was 68.2\%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9\% as well as digital DNA-DNA hybridization values between 22.5 and 19.7\%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)).}, language = {en} } @article{HiltGrossartMcGinnisetal.2022, author = {Hilt, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F. and Keppler, Frank}, title = {Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems}, series = {Limnology and oceanography}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.12095}, pages = {13}, year = {2022}, abstract = {Methane (CH4) from aquatic ecosystems contributes to about half of total global CH4 emissions to the atmosphere. Until recently, aquatic biogenic CH4 production was exclusively attributed to methanogenic archaea living under anoxic or suboxic conditions in sediments, bottom waters, and wetlands. However, evidence for oxic CH4 production (OMP) in freshwater, brackish, and marine habitats is increasing. Possible sources were found to be driven by various planktonic organisms supporting different OMP mechanisms. Surprisingly, submerged macrophytes have been fully ignored in studies on OMP, yet they are key components of littoral zones of ponds, lakes, and coastal systems. High CH4 concentrations in these zones have been attributed to organic substrate production promoting classic methanogenesis in the absence of oxygen. Here, we review existing studies and argue that, similar to terrestrial plants and phytoplankton, macroalgae and submerged macrophytes may directly or indirectly contribute to CH4 formation in oxic waters. We propose several potential direct and indirect mechanisms: (1) direct production of CH4; (2) production of CH4 precursors and facilitation of their bacterial breakdown or chemical conversion; (3) facilitation of classic methanogenesis; and (4) facilitation of CH4 ebullition. As submerged macrophytes occur in many freshwater and marine habitats, they are important in global carbon budgets and can strongly vary in their abundance due to seasonal and boom-bust dynamics. Knowledge on their contribution to OMP is therefore essential to gain a better understanding of spatial and temporal dynamics of CH4 emissions and thus to substantially reduce current uncertainties when estimating global CH4 emissions from aquatic ecosystems.}, language = {en} } @article{PanSarhanKochovskietal.2022, author = {Pan, Xuefeng and Sarhan, Radwan Mohamed and Kochovski, Zdravko and Chen, Guosong and Taubert, Andreas and Mei, Shilin and Lu, Yan}, title = {Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {18}, publisher = {RSC Publ. (Royal Society of Chemistry)}, address = {Cambridge}, issn = {2040-3372}, doi = {10.1039/d2nr01040b}, pages = {6888 -- 6901}, year = {2022}, abstract = {Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.}, language = {en} } @article{HagemannConejeroStillfriedetal.2022, author = {Hagemann, Justus and Conejero, Carles and Stillfried, Milena and Mentaberre, Gregorio and Castillo-Contreras, Raquel and Fickel, J{\"o}rns and Lopez-Olvera, Jorge Ram{\´o}n}, title = {Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {833}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.155126}, pages = {10}, year = {2022}, abstract = {Urban wildlife ecology is gaining relevance as metropolitan areas grow throughout the world, reducing natural habitats and creating new ecological niches. However, knowledge is still scarce about the colonisation processes of such urban niches, the establishment of new communities, populations and/or species, and the related changes in behaviour and life histories of urban wildlife. Wild boar (Sus scrofa) has successfully colonised urban niches throughout Europe. The aim of this study is to unveil the processes driving the establishment and maintenance of an urban wild boar population by analysing its genetic structure. A set of 19 microsatellite loci was used to test whether urban wild boars in Barcelona, Spain, are an isolated population or if gene flow prevents genetic differentiation between rural and urban wild boars. This knowledge will contribute to the understanding of the effects of synurbisation and the associated management measures on the genetic change of large mammals in urban ecosystems. Despite the unidirectional gene flow from rural to urban areas, the urban wild boars in Barcelona form an island population genotypically differentiated from the surrounding rural ones. The comparison with previous genetic studies of urban wild boar populations suggests that forest patches act as suitable islands for wild boar genetic differentiation. Previous results and the genetic structure of the urban wild boar population in Barcelona classify wild boar as an urban exploiter species. These wild boar peri-urban island populations are responsible for conflict with humans and thus should be managed by reducing the attractiveness of urban areas. The management of peri-urban wild boar populations should aim at reducing migration into urban areas and preventing phenotypic changes (either genetic or plastic) causing habituation of wild boars to humans and urban environments.}, language = {en} } @article{RalevskiApeltOlasetal.2022, author = {Ralevski, Alexandra and Apelt, Federico and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Rugarli, Elena I. and Kragler, Friedrich and Horvath, Tamas L.}, title = {Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice}, series = {Cellular and molecular life sciences}, volume = {79}, journal = {Cellular and molecular life sciences}, number = {6}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-022-04382-3}, pages = {17}, year = {2022}, abstract = {Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.}, language = {en} } @article{LeinsGrimmDrechsler2022, author = {Leins, Johannes A. and Grimm, Volker and Drechsler, Martin}, title = {Large-scale PVA modeling of insects in cultivated grasslands}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.9063}, pages = {17}, year = {2022}, abstract = {In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle.}, language = {en} } @article{GhafarianWielandNendel2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and Nendel, Claas}, title = {Estimating the Evaporative Cooling Effect of Irrigation within and above Soybean Canopy}, series = {Water}, volume = {14}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14030319}, pages = {16}, year = {2022}, abstract = {Vegetation with an adequate supply of water might contribute to cooling the land surface around it through the latent heat flux of transpiration. This study investigates the potential estimation of evaporative cooling at plot scale, using soybean as example. Some of the plants' physiological parameters were monitored and sampled at weekly intervals. A physics-based model was then applied to estimate the irrigation-induced cooling effect within and above the canopy during the middle and late season of the soybean growth period. We then examined the results of the temperature changes at a temporal resolution of ten minutes between every two irrigation rounds. During the middle and late season of growth, the cooling effects caused by evapotranspiration within and above the canopy were, on average, 4.4 K and 2.9 K, respectively. We used quality indicators such as R-squared (R-2) and mean absolute error (MAE) to evaluate the performance of the model simulation. The performance of the model in this study was better above the canopy (R-2 = 0.98, MAE = 0.3 K) than below (R-2 = 0.87, MAE = 0.9 K) due to the predefined thermodynamic condition used to estimate evaporative cooling. Moreover, the study revealed that canopy cooling contributes to mitigating heat stress conditions during the middle and late seasons of crop growth.}, language = {en} } @article{MillesDammhahnJeltschetal.2022, author = {Milles, Alexander Benedikt and Dammhahn, Melanie and Jeltsch, Florian and Schl{\"a}gel, Ulrike and Grimm, Volker}, title = {Fluctuations in density-dependent selection drive the evolution of a pace-of-life syndrome within and between populations}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {199}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {4}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/718473}, pages = {E124 -- E139}, year = {2022}, abstract = {The pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an ecoevolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r(0)) and higher sensitivity to intraspecific competition (gamma), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways.}, language = {en} } @article{StankeWengerBieretal.2022, author = {Stanke, Sandra and Wenger, Christian and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {AC electrokinetic immobilization of influenza virus}, series = {Electrophoresis : microfluids \& proteomics}, volume = {43}, journal = {Electrophoresis : microfluids \& proteomics}, number = {12}, publisher = {Wiley-Blackwell}, address = {Weinheim}, issn = {0173-0835}, doi = {10.1002/elps.202100324}, pages = {1309 -- 1321}, year = {2022}, abstract = {The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.}, language = {en} } @article{TongNankarLiuetal.2022, author = {Tong, Hao and Nankar, Amol N. and Liu, Jintao and Todorova, Velichka and Ganeva, Daniela and Grozeva, Stanislava and Tringovska, Ivanka and Pasev, Gancho and Radeva-Ivanova, Vesela and Gechev, Tsanko and Kostova, Dimitrina and Nikoloski, Zoran}, title = {Genomic prediction of morphometric and colorimetric traits in Solanaceous fruits}, series = {Horticulture research}, volume = {9}, journal = {Horticulture research}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {2052-7276}, doi = {10.1093/hr/uhac072}, pages = {11}, year = {2022}, abstract = {Selection of high-performance lines with respect to traits of interest is a key step in plant breeding. Genomic prediction allows to determine the genomic estimated breeding values of unseen lines for trait of interest using genetic markers, e.g. single-nucleotide polymorphisms (SNPs), and machine learning approaches, which can therefore shorten breeding cycles, referring to genomic selection (GS). Here, we applied GS approaches in two populations of Solanaceous crops, i.e. tomato and pepper, to predict morphometric and colorimetric traits. The traits were measured by using scoring-based conventional descriptors (CDs) as well as by Tomato Analyzer (TA) tool using the longitudinally and latitudinally cut fruit images. The GS performance was assessed in cross-validations of classification-based and regression-based machine learning models for CD and TA traits, respectively. The results showed the usage of TA traits and tag SNPs provide a powerful combination to predict morphology and color-related traits of Solanaceous fruits. The highest predictability of 0.89 was achieved for fruit width in pepper, with an average predictability of 0.69 over all traits. The multi-trait GS models are of slightly better predictability than single-trait models for some colorimetric traits in pepper. While model validation performs poorly on wild tomato accessions, the usage as many as one accession per wild species in the training set can increase the transferability of models to unseen populations for some traits (e.g. fruit shape for which predictability in unseen scenario increased from zero to 0.6). Overall, GS approaches can assist the selection of high-performance Solanaceous fruits in crop breeding.}, language = {en} } @article{SabrowskiDreymannMoelleretal.2022, author = {Sabrowski, Wiebke and Dreymann, Nico and M{\"o}ller, Anja and Czepluch, Denise and Albani, Patricia P. and Theodoridis, Dimitrios and Menger, Marcus M.}, title = {The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-12062-2}, pages = {11}, year = {2022}, abstract = {The emergence of carbapenemase-producing multi-drug resistant Enterobacteriaceae poses a dramatic, world-wide health risk. Limited treatment options and a lack of easy-to-use methods for the detection of infections with multi-drug resistant bacteria leave the health-care system with a fast-growing challenge. Aptamers are single stranded DNA or RNA molecules that bind to their targets with high affinity and specificity and can therefore serve as outstanding detection probes. However, an effective aptamer selection process is often hampered by non-specific binding. When selections are carried out against recombinant proteins, purification tags (e.g. polyhistidine) serve as attractive side targets, which may impede protein target binding. In this study, aptamer selection was carried out against N-terminally hexa-histidine tagged New Delhi metallo-ss-lactamase 1. After 14 selection rounds binding to polyhistidine was detected rather than to New Delhi metallo-ss-lactamase 1. Hence, the selection strategy was changed. As one aptamer candidate showed remarkable binding affinity to polyhistidine, it was used as a masking probe and selection was restarted from selection round 10. Finally, after three consecutive selection rounds, an aptamer with specific binding properties to New Delhi metallo-ss-lactamase 1 was identified. This aptamer may serve as a much-needed detection probe for New Delhi metallo-ss-lactamase 1 expressing Enterobacteriaceae.}, language = {en} }