@article{KirpichenkoShainyanKleinpeteretal.2018, author = {Kirpichenko, Svetlana and Shainyan, Bagrat A. and Kleinpeter, Erich and Shlykov, Sergey A. and Tran Dinh Phien, and Albanov, Alexander}, title = {Synthesis of 3-fluoro-3-methyl-3-silatetrahydropyran and its conformational preferences in gas and solution by GED, NMR and theoretical calculations}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2018.02.055}, pages = {1859 -- 1867}, year = {2018}, abstract = {The 3,3-disubstitued 3-silaheterocyclohexane with an electronegative substituent at silicon, 3-fluoro-3-methyl-3-silatetrahydropyran 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED) and low temperature C-13 and F-19 NMR spectroscopy. Quantum-chemical calculations were carried out both for the isolated species and Hcomplexes in gas and in polar medium. The predominance of the 1-FeqMeax conformer (1-F-eq:1-F-ax ratio of 65:35, Delta G degrees = 0.37 kcal/mol) determined from GED is close to the theoretically estimated conformational equilibrium, especially at the DFT level. In solution, low temperature NMR spectroscopy showed no decoalescence of the signals in C-13 (down to 95 K) and F-19 NMR spectra (down to 123 K). However, the calculated F-19 chemical shift of -173.6 ppm for the 1-FeqMeax conformer practically coincides with the experimentally observed value (-173 to -175 ppm) as distinct from that for the 1-FaxMeeq conformer (-188.8 ppm), suggesting compound 1 to be anancomeric in solution, in compliance with its theoretical and experimental preference in the gas phase.}, language = {en} } @article{RoderHille2018, author = {Roder, Phillip and Hille, Carsten}, title = {Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-24255-9}, pages = {9}, year = {2018}, abstract = {Local manipulation of complex tissues at the single-cell level is challenging and requires excellent sealing between the specimen and the micromanipulation device. Here, biological applications for a recently developed loading technique for a force-and pressure-controlled fluidic force microscope micropipette are described. This technique allows for the exact positioning and precise spatiotemporal control of liquid delivery. The feasibility of a local loading technique for tissue applications was investigated using two fluorescent dyes, with which local loading behaviour could be optically visualised. Thus, homogeneous intracellular distribution of CellTracker Red and accumulation of SYTO 9 Green within nuclei was realised in single cells of a tissue preparation. Subsequently, physiological micromanipulation experiments were performed. Salivary gland tissue was pre-incubated with the Ca2+-sensitive dye OGB-1. An intracellular Ca2+ rise was then initiated at the single-cell level by applying dopamine via micropipette. When pre-incubating tissue with the nitric oxide (NO)-sensitive dye DAF-FM, NO release and intercellular NO diffusion was observed after local application of the NO donor SNP. Finally, local micromanipulation of a well-defined area along irregularly shaped cell surfaces of complex biosystems was shown for the first time for the fluidic force microscope micropipette. Thus, this technique is a promising tool for the investigation of the spatiotemporal effects of locally applied substances in complex tissues.}, language = {en} } @article{LiebigSarhanPrietzeletal.2018, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Th{\"u}nemann, Andreas F. and Bargheer, Matias and Koetz, Joachim}, title = {Undulated Gold Nanoplatelet Superstructures}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b02898}, pages = {4584 -- 4594}, year = {2018}, abstract = {Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 degrees C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of similar to 6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor.}, language = {en} } @article{WessigJohnMertens2018, author = {Wessig, Pablo and John, Leonard and Mertens, Monique}, title = {Extending the Class of [1,3]-Dioxolo[4.5-f]benzodioxole (DBD) Fluorescent Dyes}, series = {European journal of organic chemistry}, volume = {2018}, journal = {European journal of organic chemistry}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201800002}, pages = {1674 -- 1681}, year = {2018}, abstract = {Synthetic routes to a collection of new fluorescent dyes are described, which are based on the [1,3]-dioxolo[4.5-f]benzodioxole (DBD) core. By introducing different electron withdrawing groups in 4- and 8-position of the DBD moiety the emission wavelength could be adjusted over a large spectral range from blue to orange light.}, language = {en} } @article{TianHuZhangetal.2018, author = {Tian, Guang-Zong and Hu, Jing and Zhang, Heng-Xi and Rademacher, Christoph and Zou, Xiao-Peng and Zheng, Hong-Ning and Xu, Fei and Wang, Xiao-Li and Linker, Torsten and Yin, Jian}, title = {Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs)}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-24927-6}, pages = {8}, year = {2018}, abstract = {Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo-and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1NH <-> (C1H)-C-i, (C2H)-C-i correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.}, language = {en} } @article{JohnZimmermannBoeker2018, author = {John, Daniela and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Generation of 3-dimensional multi-patches on silica particles via printing with wrinkled stamps}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00224j}, pages = {3057 -- 3062}, year = {2018}, abstract = {A simple route towards patchy particles with anisotropic patches with respect to a different functionality and directionality is presented. This method is based on microcontact printing of positively charged polyethylenimine (PEI) on silica particles using wrinkled stamps. Due to the wrinkled surface, the number of patches on the particles as well as the distance between two patches can be controlled.}, language = {en} } @article{MaticSchlaad2018, author = {Matic, Aleksandar and Schlaad, Helmut}, title = {Thiol-ene photofunctionalization of 1,4-polymyrcene}, series = {Polymer international}, volume = {67}, journal = {Polymer international}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0959-8103}, doi = {10.1002/pi.5534}, pages = {500 -- 505}, year = {2018}, abstract = {1,4-Polymyrcene was synthesized by anionic polymerization of -myrcene and was subjected to photochemical functionalization with various thiols (i.e. methyl thioglycolate, methyl 3-mercaptopropionate, butyl 3-mercaptopropionate, ethyl 2-mercaptopropionate and 2-methyl-2-propanethiol) using benzophenone/UV light as the radical source. The yield of thiol addition to the trisubstituted double bonds of 1,4-polymyrcene decreased in the order 1 degrees thiol (ca 95\%) > 2 degrees thiol (ca 80\%) > 3 degrees thiol (<5\%), due to the reversibility of the thiol-ene reaction. Remarkably, thiol addition to the side-chain double bonds was 8 - 10 times (1 degrees thiol) or 24 times (2 degrees thiol) faster than to the main-chain double bonds, which can be explained by the different accessibility of the double bonds and steric hindrance. Despite the use of a 10-fold excess of thiol with respect to myrcene units, the thiol-ene addition was accompanied by chain coupling reactions, which in the extreme case of 3 degrees thiol (or in the absence of thiol) resulted in the formation of insoluble crosslinked material. As an example, a methyl-thioglycolate-functionalized 1,4-polymyrcene was saponified/crosslinked to give submicron polyelectrolyte particles in dilute alkaline solution. (c) 2018 Society of Chemical Industry}, language = {en} } @article{PazHeydenreichSchmidtetal.2018, author = {Paz, Cristian and Heydenreich, Matthias and Schmidt, Bernd and Vadra, Nahir and Baggio, Ricardo}, title = {Three new dihydro-beta-agarofuran sesquiterpenes from the seeds of Maytenus boaria}, series = {Acta Crystallographica Section C}, volume = {74}, journal = {Acta Crystallographica Section C}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2296}, doi = {10.1107/S2053229618005429}, pages = {564 -- 570}, year = {2018}, abstract = {As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new beta-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b] oxepine-5,10-diylbis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a, 9-tetramethyloctahydro-2H-3,9a-methanobenzo[ b] oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S, 4S, 5S, 6R, 7R, 8R, 9R, 10S in (II) and 1S, 4S, 5S, 6R, 7R, 9S, 10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.}, language = {en} } @article{StarkeKochKammeretal.2018, author = {Starke, Ines and Koch, Andreas and Kammer, Stefan and Holdt, Hans-J{\"u}rgen and M{\"o}ller, Heiko Michael}, title = {Electrospray mass spectrometry and molecular modeling study of formation and stability of silver complexes with diazaperylene and bisisoquinoline}, series = {Journal of mass spectrometry}, volume = {53}, journal = {Journal of mass spectrometry}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4071}, pages = {408 -- 418}, year = {2018}, abstract = {The complex formation of the following diazaperylene ligands (L) 1,12-diazaperylene 1, 1,1-bisisoquinoline 2, 2,11-disubstituted 1,12-diazaperylenes (alkyl=methyl, ethyl, isopropyl, 3, 5, 7), 3,3-disubstituted 1,1-bisisoquinoline (alkyl=methyl, ethyl, isopropyl, 4, 6, 8 and with R=phenyl, 11 and with pyridine 12), and the 5,8-dimethoxy-substituted diazaperylene 9, 6,6-dimethoxy-substituted bisisoquinoline 10 with AgBF4 was investigated. Collision-induced dissociation measurements were used to evaluate the relative stabilities of the ligands themselves and for the [1:1](+) complexes as well as for the homoleptic and heteroleptic silver [1:2](+) complexes in the gas phase. This method is very useful in rapid screening of the stabilities of new complexes in the gas phase. The influence of the spatial arrangement of the ligands and the type of substituents employed for the complexation were examined. The effect of the preorganization of the diazaperylene on the threshold activation voltages and thus of the relative binding energies of the different complexes are discussed. Density functional theory calculations were used to calculate the optimized structures of the silver complexes and compared with the stabilities of the complexes in the gas phase for the first time.}, language = {en} } @article{Bouakline2018, author = {Bouakline, Foudhil}, title = {Unambiguous signature of the berry phase in intense laser dissociation of diatomic molecules}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b00607}, pages = {2271 -- 2277}, year = {2018}, abstract = {We report strong evidence of Berry phase effects in intense laser dissociation of D-2(+) molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1)(j). Indeed, the PAD local maxima (minima) observed in one case (j odd) correspond to local minima (maxima) in the other case (j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive (j odd) or destructive (j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D-2(+) molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.}, language = {en} } @article{MeilingCywinskiLoehmannsroeben2018, author = {Meiling, Till Thomas and Cywinski, Piotr J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Two-Photon excitation fluorescence spectroscopy of quantum dots}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b12345}, pages = {9641 -- 9647}, year = {2018}, abstract = {The applications of quantum dots (QDs) in two-photon (2P) excitation applications demand reliable data about their 2P absorption (2PA) cross sections (sigma(2PA)). In the present study, sigma(2PA) values have been determined for a series of commercial colloidal CdSe/ZnS QDs and CdSeTe/ZnS QDs in aqueous media. For the first time for these QDs, the sigma(2PA) values have been determined over a wide spectral range, that is, between 720 and 900 nm, and are compared to the extinction coefficient (epsilon) values obtained under one-photon (1P) excitation. Furthermore, we present a QD in combination with an organic dye in a biotin-streptavidin Forster resonance energy transfer bioassay under 1P and 2P excitation. The results for the bioassay under 2P excitation are compared to those obtained under 1P excitation. The results demonstrate that in the case of the 2P excitation, higher sensitivity can be achieved because of an improved signal-to-noise ratio.}, language = {en} } @misc{Lendlein2018, author = {Lendlein, Andreas}, title = {Fabrication of reprogrammable shape-memory polymer actuators for robotics}, series = {Science robotics}, volume = {3}, journal = {Science robotics}, number = {18}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2470-9476}, doi = {10.1126/scirobotics.aat9090}, pages = {2}, year = {2018}, abstract = {Shape-memory polymer actuators, whose actuation geometry and switching temperatures are reprogrammable by physical fabrication schemes, were recently suggested for robotics with the option for self-healing and degradability.}, language = {en} } @article{SchultzeSchmidt2018, author = {Schultze, Christiane and Schmidt, Bernd}, title = {Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence}, series = {The journal of organic chemistry}, volume = {83}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.8b00667}, pages = {5210 -- 5224}, year = {2018}, abstract = {The one-pot synthesis of 8-prenylcoumarins from 1,1-dimethylallylated salicylaldehydes and the stabilized ylide [(ethoxycarbonyl)methylene]triphenylphosphorane under microwave conditions was found to have a limited scope. The sequence suffers from a difficult and sometimes low-yielding synthesis of the precursors and from a competing deprenylation upon microwave irradiation. This side reaction occurs in particular with electron rich arenes with two or more alkoxy groups at adjacent positions, a prominent substitution pattern in naturally occurring 8-prenylcoumarins. Both limitations of this one-step sequence were overcome by a two-step synthesis consisting of a microwave-promoted tandem allyl ether Claisen rearrangement/Wittig olefination and a subsequent olefin cross metathesis with 2-methyl-2-butene. The cross metathesis step proceeds with a high selectivity and yields exclusively the desired prenyl, rather than the alternative crotyl substituent. Several naturally occurring 8-prenylcoumarins that were previously inaccessible have been synthesized in good overall yields along this route.}, language = {en} } @article{LeeHwangSchildeetal.2018, author = {Lee, Hui-Chun and Hwang, Jongkook and Schilde, Uwe and Antonietti, Markus and Matyjaszewski, Krzysztof and Schmidt, Bernhard V. K. J.}, title = {Toward ultimate control of radical polymerization}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00546}, pages = {2983 -- 2994}, year = {2018}, abstract = {Herein, an approach via combination of confined porous textures and reversible deactivation radical polymerization techniques is proposed to advance synthetic polymer chemistry, i.e., a connection of metal-organic frameworks (MOFs) and activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). Zn-2(benzene-1,4-dicarboxylate)2(1,4-diazabicyclo[2.2.2]-octane) [Zn-2(bdc)(2)(dabco)] is utilized as a reaction environment for polymerization of various methacrylate monomers (methyl, ethyl, benzyl, and isobornyl methacrylate) in a confined nanochannel, resulting in polymers with control over dispersity, end functionalities, and tacticity with respect to distinct molecular size. To refine and reconsolidate the compartmentation effect on polymer regularity, initiator-functionalized Zn MOF was synthesized via cocrystallization with an initiator-functionalized ligand, 2-(2-bromo-2-methylpropanamido)-1,4-benzenedicarboxylate (Brbdc), in different ratios (10\%, 20\%, and 50\%). Through the embedded initiator, surface-initiated ARGET ATRP was directly initiated from the walls of the nanochannels. The obtained polymers had a high molecular weight up to 392 000. Moreover, a significant improvement in end-group functionality and stereocontrol was observed, entailing polymers with obvious increments in isotacticity. The results highlight a combination of MOFs and ATRP that is a promising and universal methodology to prepare various polymers with high molecular weight exhibiting well-defined uniformity in chain length and microstructure as well as the preserved chain-end functionality.}, language = {en} } @article{MeilingSchuermannVogeletal.2018, author = {Meiling, Till Thomas and Sch{\"u}rmann, Robin Mathis and Vogel, Stefanie and Ebel, Kenny and Nicolas, Christophe and Milosavljevic, Aleksandar R. and Bald, Ilko}, title = {Photophysics and Chemistry of Nitrogen-Doped Carbon Nanodots with High Photoluminescence Quantum Yield}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b00748}, pages = {10217 -- 10230}, year = {2018}, abstract = {Fluorescent carbon nanodots (CNDs) are very promising nanomaterials for a broad range of applications because of their high photostability, presumed selective luminescence, and low cost at which they can be produced. In this respect, CNDs are superior to well-established semiconductor quantum dots and organic dyes. However, reported synthesis protocols for CNDs typically lead to low photoluminescence quantum yield (PLQY) and low reproducibility, resulting in a poor understanding of the CND chemistry and photophysics. Here, we report a one-step synthesis of nitrogen-doped carbon nanodots (N-CNDs) from various carboxylic acids, Tris, and ethylenediaminetetraacetic acid resulting in high PLQY of up to 90\%. The reaction conditions in terms of starting materials, temperature, and reaction time are carefully optimized and their influence on the photophysical properties is characterized. We find that citric acid-derived N-CNDs can result in a very high PLQY of 90\%, but they do not show selective luminescence. By contrast, acetic acid-derived N-CNDs show selective luminescence but a PLQY of 50\%. The chemical composition of the surface and core of these two selected N-CND types is characterized among others by high-resolution synchrotron X-ray photoelectron spectroscopy using single isolated N-CND clusters. The results indicate that photoexcitation occurs in the N-CND core, whereas the emission properties are determined by the N-CND surface groups.}, language = {en} } @article{KarrasHolecBednarovaetal.2018, author = {Karras, Manfred and Holec, Jan and Bednarova, Lucie and Pohl, Radek and Schmidt, Bernd and Stara, Irena G. and Stary, Ivo}, title = {Asymmetric Synthesis of Nonracemic 2-Amino[6]helicenes and Their Self-Assembly into Langmuir Films}, series = {The journal of organic chemistry}, volume = {83}, journal = {The journal of organic chemistry}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.8b00538}, pages = {5523 -- 5538}, year = {2018}, abstract = {Alternative ways of preparing nonracemic 2-amino[6]helicene derivatives were explored. The enantioselective [2 + 2 + 2] cycloisomerization of a nonchiral triyne under Ni(cod)(2)/(R)-QUINAP catalysis delivered the enantioenriched (+)-(P)-2-aminodibenzo[6]helicene derivative in 67\% ee. An ultimate "point-to-helical" chirality transfer was observed in the cyclization of enantiopure triynes mediated by Ni(CO)(2)(PPh3)(2) affording (-)-(M)- or (+)-(P)-7,8-bis(p-tolyl)hexahelicen-2-amine in >99\% ee as well as its benzoderivative in >99\% ee. The latter mode of stereocontrol was inefficient for a 2-aminobenzo[6]helicene congener with an embedded five-membered ring. The rac-, (-)-(M)-, and (+)-(P)-7,8-bis(p-tolyl)hexahelicen-2-amines formed Langmuir monolayers at the air water interface featuring practically identical surface pressure vs mean molecular area isotherms. The corresponding Langmuir-Blodgett films on quartz or silicon substrates were characterized by UV vis/ECD spectroscopy and AFM microscopy, respectively.}, language = {en} } @article{KimHeyneAbouserieetal.2018, author = {Kim, Yohan and Heyne, Benjamin and Abouserie, Ahed and Pries, Christopher and Ippen, Christian and G{\"u}nter, Christina and Taubert, Andreas and Wedel, Armin}, title = {CuS nanoplates from ionic liquid precursors-Application in organic photovoltaic cells}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {148}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {19}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4991622}, pages = {10}, year = {2018}, abstract = {Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl) sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate( II). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16\% higher than that of a control device fabricated without the nanoplates. (C) 2018 Author(s).}, language = {en} } @article{RajuLiebigKlemkeetal.2018, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {pH-responsive magnetic Pickering Janus emulsions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {296}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-018-4321-z}, pages = {1039 -- 1046}, year = {2018}, abstract = {We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field.}, language = {en} } @article{FerrerPeresdosSantosetal.2018, author = {Ferrer, Beatriz and Peres, Tanara Vieira and dos Santos, Alessandra Antunes and Bornhorst, Julia and Morcillo, Patricia and Goncalves, Cinara Ludvig and Aschner, Michael}, title = {Methylmercury affects the expression of hypothalamic neuropeptides that control body weight in C57BL/6J mice}, series = {Toxicological sciences}, volume = {163}, journal = {Toxicological sciences}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1096-6080}, doi = {10.1093/toxsci/kfy052}, pages = {557 -- 568}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 mu M). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender-and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile.}, language = {en} } @article{SchoenemannLaschewskyRosenhahn2018, author = {Sch{\"o}nemann, Eric and Laschewsky, Andre and Rosenhahn, Axel}, title = {Exploring the long-term hydrolytic behavior of zwitterionic polymethacrylates and polymethacrylamides}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10060639}, pages = {23}, year = {2018}, abstract = {The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) (sulfobetaine methacrylate), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) (sulfobetaine methacrylamide) as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by H-1 NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and Preuss, Thomas G. and McGee, Sean and Jeltsch, Florian}, title = {Potential impact of effects on reproductive attributes induced by herbicides on a plant community}, series = {Environmental Toxicology and Chemistry}, volume = {37}, journal = {Environmental Toxicology and Chemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0730-7268}, doi = {10.1002/etc.4122}, pages = {1707 -- 1722}, year = {2018}, abstract = {Current herbicide risk assessment guidelines for nontarget terrestrial plants require testing effects on young, vulnerable life stages (i.e., seedling emergence [and subsequent growth] and vegetative vigor [growth and dry wt]) but not directly on the reproduction of plants. However, the European Food Safety Authority (EFSA) has proposed that effects on reproduction might be considered when evaluating the potential effects on plants. We adapted the plant community model for grassland (IBC-grass) to give insight into the current debate on the sensitivity of reproductive versus vegetative endpoints in ecological risk assessment. In an extensive sensitivity analysis of this model, we compared plant attributes potentially affected by herbicides and the consequences for long-term plant population dynamics and plant diversity. This evaluation was implemented by reducing reproductive as well as vegetative endpoints by certain percentages (e.g., 10-90\%) as a theoretical assumption. Plant mortality and seed sterility (i.e., inability of seeds to germinate) were the most sensitive attributes. Our results indicated that effects on seed production at off-field exposure rates must be very strong to have an impact on the risk assessment. Otherwise, effects on seed production are compensated for by the soil seed bank. The present study highlights the usefulness of community level modeling studies to support regulators in their decisions on the appropriate risk assessment endpoints and provides confidence in their assessments. Environ Toxicol Chem 2018;37:1707-1722. (c) 2018 SETAC}, language = {en} } @article{HartwigHass2018, author = {Hartwig, Anne and Hass, Roland}, title = {Monitoring lactose crystallization at industrially relevant concentrations by photon density wave spectroscopy}, series = {Chemical engineering \& technology}, volume = {41}, journal = {Chemical engineering \& technology}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0930-7516}, doi = {10.1002/ceat.201700685}, pages = {1139 -- 1146}, year = {2018}, abstract = {Lactose is of great industrial importance and its production includes the cooling crystallization from highly concentrated solutions. Monitoring the crystallization process is essential to ensure reproducible product quality. Photon density wave (PDW) spectroscopy enables in-line monitoring of highly concentrated processes in liquid dispersions. It was applied to the determination of the solubility and nucleation points of lactose monohydrate in water, sizing of lactose crystals, and to dissolution as well as crystallization monitoring. Other process analytical technologies (focused-beam reflectance measurement, particle vision and measurement) were used as reference, and the comparison indicates that PDW spectroscopy is very robust against probe fouling and is, thus, a useful tool for monitoring crystallization processes in concentrated suspensions.}, language = {en} } @article{PoghosyanShahinyanKoetz2018, author = {Poghosyan, Armen H. and Shahinyan, A. A. and Koetz, Joachim}, title = {Self-assembled monolayer formation of distorted cylindrical AOT micelles on gold surfaces}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {546}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2018.02.067}, pages = {20 -- 27}, year = {2018}, abstract = {Self-assembling features of sodium dioctyl sulfosuccinate (AOT) molecules and micelle adsorption on gold Au (111) surfaces have been examined using molecular dynamics simulation. We argue that AOT micelles display a strong adsorption on gold surfaces resulting in distorted cylindrical micelles attached to the (111) facets. The well protected Au(111) facets decorated by a dense packed elongated ellipsoidal AOT layer hinder the diffusion of the reactant to the (111) facets and could result in the preferential growth of ultra-thin gold nanoplatelets.}, language = {en} } @article{PaillesSylvestreEscobaretal.2018, author = {Pailles, Christine and Sylvestre, Florence and Escobar, Jaime and Tonetto, Alain and Rustig, Sybille and Mazur, Jean-Charles}, title = {Cyclotella petenensis and Cyclotella cassandrae, two new fossil diatoms from Pleistocene sediments of Lake Peten-Itza, Guatemala, Central America}, series = {Phytotaxa : a rapid international journal for accelerating the publication of botanical taxonomy}, volume = {351}, journal = {Phytotaxa : a rapid international journal for accelerating the publication of botanical taxonomy}, number = {4}, publisher = {Magnolia Press}, address = {Auckland}, issn = {1179-3155}, doi = {10.11646/phytotaxa.351.4.1}, pages = {247 -- 263}, year = {2018}, abstract = {While analyzing the fossil diatom flora in one of the longest paleolimnological records (core PI-6) from Lake Peten-Itza, lowland Guatemala, we encountered Aulacoseira Thwaites, Cyclotella (Kutzing) and Discostella (Cleve \& Grunow) Houk \& Klee species appearing successively in the record. Among them, two new species that are assigned to the genus Cyclotella are described herein. Cyclotella petenensis sp. nov. is characterised by a coarse striation marked by a shadow line and a tangentially undulate central area with an arc of central fultoportulae. Cyclotella cassandrae sp. nov. has an elliptically shaped valve, coarse striae and a scattered ring of central fultoportulae in the central area. Classification and differences to similar taxa in the genus Cyclotella are discussed.}, language = {en} } @article{HansenKochKleinpeter2018, author = {Hansen, Poul Erik and Koch, Andreas and Kleinpeter, Erich}, title = {Ring current and anisotropy effects on OH chemical shifts in resonance-assisted intramolecular H-bonds}, series = {Tetrahedron letters}, volume = {59}, journal = {Tetrahedron letters}, number = {23}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2018.05.006}, pages = {2288 -- 2292}, year = {2018}, abstract = {Ring current effects on resonance-assisted and intramolecularly bridged hydrogen bond protons for 10-hydroxybenzo[h]quinoline 1 and a number of related compounds were calculated and the through-space NMR shieldings (TSNMRS) obtained hereby visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. These calculations revealed that this through-space effect is comparably large (up to 2 ppm) dependent on the position of the intramolecularly bridged OH proton, and therefore, contribute considerably to the chemical shift of the latter making it questionable to use delta(OH)/ppm in the estimation of intramolecular hydrogen bond strength without taking this into account. Furthermore, the anisotropy effects of additional groups on the aromatic moiety (e.g. the carbonyl group in salicylaldehyde or in o-hydroxyacetophenone of ca. 0.6 ppm deshielding) should also be considered. These through-space effects need to be taken into account when using OH chemical shifts to estimate hydrogen bond strength.}, language = {en} } @article{ErtanSavchenkoIgnatovaetal.2018, author = {Ertan, Emelie and Savchenko, Viktoriia and Ignatova, Nina and Vaz da Cruz, Vinicius and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor}, title = {Ultrafast dissociation features in RIXS spectra of the water molecule}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp01807c}, pages = {14384 -- 14397}, year = {2018}, abstract = {In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s-1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b-114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.}, language = {en} } @misc{Santer2018, author = {Santer, Svetlana}, title = {Light responsive soft nano-objects}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {256}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2018}, language = {en} } @article{OenerQuerebilloDavidetal.2018, author = {{\"O}ner, Ibrahim Halil and Querebillo, Christine Joy and David, Christin and Gernert, Ulrich and Walter, Carsten and Driess, Matthias and Leimk{\"u}hler, Silke and Ly, Khoa Hoang and Weidinger, Inez M.}, title = {High electromagnetic field enhancement of TiO2 nanotube electrodes}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201802597}, pages = {7225 -- 7229}, year = {2018}, abstract = {We present the fabrication of TiO2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochromeb(5) were observed upon covalent immobilization of the protein matrix on the TiO2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 degrees C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode.}, language = {en} } @article{HeckKanehiraKneippetal.2018, author = {Heck, Christian and Kanehira, Yuya and Kneipp, Janina and Bald, Ilko}, title = {Placement of Single Proteins within the SERS Hot Spots of Self-Assembled Silver Nanolenses}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {25}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201801748}, pages = {7444 -- 7447}, year = {2018}, abstract = {This study demonstrates the bottom-up synthesis of silver nanolenses. A robust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNA single strands of orthogonal sequence. Coated particles 10nm, 20nm, and 60nm in diameter were self-assembled by DNA origami scaffolds to form silver nanolenses. Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface-enhanced Raman scattering (SERS) experiments. By correlated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of a single streptavidin molecule, from a single silver nanolens, were detected. The discrete, self-similar aggregates of solid silver nanoparticles are promising for plasmonic applications.}, language = {en} } @article{YanRudolphNoecheletal.2018, author = {Yan, Wan and Rudolph, Tobias and N{\"o}chel, Ulrich and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {51}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.8b00322}, pages = {4624 -- 4632}, year = {2018}, abstract = {Polymeric materials possessing specific features like programmability, high deformability, and easy processability are highly desirable for creating modern actuating systems. In this study, thermoplastic shape-memory polymer actuators obtained by combining crystallizable poly(epsilon-caprolactone) (PCL) and poly(3S-isobutylmorpholin-2,5-dione) (PIBMD) segments in multiblock copolymers are described. We designed these materials according to our hypothesis that the confinement of glassy PIBMD domains present at the upper actuation temperature contribute to the stability of the actuator skeleton, especially at large programming strains. The copolymers have a phase-segregated morphology, indicated by the well-separated melting and glass transition temperatures for PIBMD and PCL, but possess a partially overlapping T-m of PCL and T-g of PIBMD in the temperature interval from 40 to 60 degrees C. Crystalline PIBMD hard domains act as strong physical netpoints in the PIBMD-PCL bulk material enabling high deformability (up to 2000\%) and good elastic recoverability (up to 80\% at 50 degrees C above T-m,T-PCL). In the programmed thermoplastic actuators a high content of crystallizable PCL actuation domains ensures pronounced thermoreversible shape changes upon repetitive cooling and heating. The programmed actuator skeleton, composed of PCL crystals present at the upper actuation temperature T-high and the remaining glassy PIBMD domains, enabled oriented crystallization upon cooling. The actuation performance of PIBMD-PCL could be tailored by balancing the interplay between actuation and skeleton, but also by varying the quantity of crystalline PIBMD hard domains via the copolymer composition, the applied programming strain, and the choice of T-high. The actuator with 17 mol\% PIBMD showed the highest reversible elongation of 11.4\% when programmed to a strain of 900\% at 50 degrees C. It is anticipated that the presented thermoplastic actuator materials can be applied as modern compression textiles.}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Stable Carbenes or Betaines?}, series = {European journal of organic chemistry}, volume = {2018}, journal = {European journal of organic chemistry}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201800462}, pages = {3114 -- 3121}, year = {2018}, abstract = {The anisotropy effect in H-1 NMR spectroscopy can be readily employed to indicate the position of carbene/betaine mesomeric equilibria. NR2 substituted carbene/betaines tend to adopt betaine structures, whereas in the absence of NR2 substituents, the betaine structures cannot stabilise the structure through both -donation effects of the NMe2 groups and the electronegativity of the nitrogen atoms, and the corresponding carbene-like structures are preferred. These conclusions are supported by calculated bond orders and (C-13)/ppm values. The spatial magnetic properties of isonitriles and carbon monoxide, which can be counted as stable carbenes or, at least, as carbene-analogues, also exist as stable betaine structures, which is again supported by structural and magnetic properties.}, language = {en} } @misc{BornhorstKippHaaseetal.2018, author = {Bornhorst, Julia and Kipp, Anna Patricia and Haase, Hajo and Meyer, Soeren and Schwerdtle, Tanja}, title = {The crux of inept biomarkers for risks and benefits of trace elements}, series = {Trends in Analytical Chemistry}, volume = {104}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2017.11.007}, pages = {183 -- 190}, year = {2018}, abstract = {Nowadays, the role of trace elements (TE) is of growing interest because dyshomeostasis of selenium (Se), manganese (Mn), zinc (Zn), and copper (Cu) is supposed to be a risk factor for several diseases. Thereby, research focuses on identifying new biomarkers for the TE status to allow for a more reliable description of the individual TE and health status. This review mirrors a lack of well-defined, sensitive, and selective biomarkers and summarizes technical limitations to measure them. Thus, the capacity to assess the relationship between dietary TE intake, homeostasis, and health is restricted, which would otherwise provide the basis to define adequate intake levels of single TE in both healthy and diseased humans. Besides that, our knowledge is even more limited with respect to the real life situation of combined TE intake and putative interactions between single TE.}, language = {en} } @article{KasyanenkoUnksovBakulevetal.2018, author = {Kasyanenko, Nina and Unksov, Ivan and Bakulev, Vladimir and Santer, Svetlana}, title = {DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23071576}, pages = {14}, year = {2018}, abstract = {Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.}, language = {en} } @article{GeroldingerTonnerFudickaretal.2018, author = {Geroldinger, Gerald and Tonner, Matthias and Fudickar, Werner and De Sarkar, Sritama and Dighal, Aishwarya and Monzote, Lianet and Staniek, Katrin and Linker, Torsten and Chatterjee, Mitali and Gille, Lars}, title = {Activation of anthracene endoperoxides in leishmania and impairment of mitochondrial functions}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23071680}, pages = {22}, year = {2018}, abstract = {Leishmaniasis is a vector-borne disease caused by protozoal Leishmania. Because of resistance development against current drugs, new antileishmanial compounds are urgently needed. Endoperoxides (EPs) are successfully used in malaria therapy, and experimental evidence of their potential against leishmaniasis exists. Anthracene endoperoxides (AcEPs) have so far been only technically used and not explored for their leishmanicidal potential. This study verified the in vitro efficiency and mechanism of AcEPs against both Leishmania promastigotes and axenic amastigotes (L. tarentolae and L. donovani) as well as their toxicity in J774 macrophages. Additionally, the kinetics and radical products of AcEPs' reaction with iron, the formation of radicals by AcEPs in Leishmania, as well as the resulting impairment of parasite mitochondrial functions were studied. Using electron paramagnetic resonance combined with spin trapping, photometry, and fluorescence-based oximetry, AcEPs were demonstrated to (i) show antileishmanial activity in vitro at IC50 values in a low micromolar range, (ii) exhibit host cell toxicity in J774 macrophages, (iii) react rapidly with iron (II) resulting in the formation of oxygen- and carbon-centered radicals, (iv) produce carbon-centered radicals which could secondarily trigger superoxide radical formation in Leishmania, and (v) impair mitochondrial functions in Leishmania during parasite killing. Overall, the data of different AcEPs demonstrate that their structures besides the peroxo bridge strongly influence their activity and mechanism of their antileishmanial action.}, language = {en} } @article{LiebigMorenoThuenemannetal.2018, author = {Liebig, Ferenc and Moreno, Silvia and Thuenemann, Andreas F. and Temme, Achim and Appelhans, Dietmar and Koetz, Joachim}, title = {Toxicological investigations of "naked" and polymer-entrapped AOT-based gold nanotriangles}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {167}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2018.04.059}, pages = {560 -- 567}, year = {2018}, abstract = {Negatively charged ultrathin gold nanotriangles (AuNTs) were synthesized in a vesicular dioctyl sodium sulfosuccinate (AOT)/phospholipid-based template phase. These "naked" AuNTs with localized surface plasmon resonances in the NIR region at about 1300 nm and special photothermal properties are of particular interest for imaging and hyperthermia of cancerous tissues. For these kinds of applications the toxicity and the cellular uptake of the AuNTs is of outstanding importance. Therefore, this study focuses on the toxicity of "naked" AOT-stabilized AuNTs compared to polymer-coated AuNTs. Polymeric coating consisted of non-modified hyperbranched poly(ethyleneimine) (PEI), maltose-modified poly(ethyleneimine) (PEI-Mal) and heparin. The toxicological experiments were carried out with two different cell lines (embryonic kidney carcinoma cell line HEK293T and NK-cell leukemia cell line YTS). This study revealed that the heparin-coating of AuNTs improved biocompatibility by a factor of 50 when compared to naked AuNTs. Of note, the highest nontoxic concentration of the AuNTs coated with PEI and PEI-Mal is drastically decreased. Overall, this is mainly triggered by the different surface charges of polymeric coatings. Therefore, AuNTs coated with heparin were selected to carry out uptake studies. Their promising high biocompatibility and cellular uptake may open future studies in the field of biomedical applications. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{FudickarLinker2018, author = {Fudickar, Werner and Linker, Torsten}, title = {Release of Singlet Oxygen from Organic Peroxides under Mild Conditions}, series = {ChemPhotoChem}, volume = {2}, journal = {ChemPhotoChem}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.201700235}, pages = {548 -- 558}, year = {2018}, abstract = {Singlet oxygen can be released in the dark in nearly quantitative yield from endoperoxides of naphthalenes, anthracenes and pyridones as an alternative to its generation by photosensitization. Recently, new donor systems have been designed which operate at very low temperatures but which are prepared from their parent forms at acceptable rates. Enhancement of the reactivity of donors is conveniently achieved by the design of the substitution pattern or through the use of plasmonic heating of nanoparticle-bound donors. The most important aim of these donor molecules is to transfer singlet oxygen in a controlled and directed manner to a target. Low temperatures and the linking between donors and acceptors reduce the random walk of oxygen and may force an attack at the desired position. By using chiral donor systems, new stereocenters might be introduced into prochiral acceptors.}, language = {en} } @article{MelaniNagataWirthetal.2018, author = {Melani, Giacomo and Nagata, Yuki and Wirth, Jonas and Saalfrank, Peter}, title = {Vibrational spectroscopy of hydroxylated alpha-Al2O3(0001) surfaces with and without water}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5023347}, pages = {10}, year = {2018}, abstract = {Using gradient- and dispersion-corrected density functional theory in connection with ab initio molecular dynamics and efficient, parametrized Velocity-Velocity Autocorrelation Function (VVAF) methodology, we study the vibrational spectra (Vibrational Sum Frequency, VSF, and infrared, IR) of hydroxylated alpha-Al2O3(0001) surfaces with and without additional water. Specifically, by considering a naked hydroxylated surface and the same surface with a particularly stable, "ice-like" hexagonal water later allows us to identify and disentangle main spectroscopic bands of OH bonds, their orientation and dynamics, and the role of water adsorption. In particular, we assign spectroscopic signals around 3700 cm(-1) as being dominated by perpendicularly oriented non-hydrogen bonded aluminol groups, with and without additional water. Furthermore, the thin water layer gives spectroscopic signals which are already comparable to previous theoretical and experimental findings for the solid/(bulk) liquid interface, showing that water molecules closest to the surface play a decisive role in the vibrational response of these systems. From a methodological point of view, the effects of temperature, anharmonicity, hydrogen-bonding, and structural dynamics are taken into account and analyzed, allowing us to compare the calculated IR and VSF spectra with the ones based on normal mode analysis and vibrational density of states. The VVAF approach employed in this work appears to be a computationally accurate yet feasible method to address the vibrational fingerprints and dynamical properties of water/metal oxide interfaces. Published by AIP Publishing.}, language = {en} } @article{SalibaCorreaBaenaWolffetal.2018, author = {Saliba, Michael and Correa-Baena, Juan-Pablo and Wolff, Christian Michael and Stolterfoht, Martin and Phung, Thi Thuy Nga and Albrecht, Steve and Neher, Dieter and Abate, Antonio}, title = {How to Make over 20\% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00136}, pages = {4193 -- 4201}, year = {2018}, abstract = {Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20\%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20\% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20\% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields.}, language = {en} } @article{ChoiKotthoffOlejkoetal.2018, author = {Choi, Youngeun and Kotthoff, Lisa and Olejko, Lydia and Resch-Genger, Ute and Bald, Ilko}, title = {DNA origami-based forster resonance energy-transfer Nanoarrays and their application as ratiometric sensors}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.8b03585}, pages = {23295 -- 23302}, year = {2018}, abstract = {DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye-dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Forster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences.}, language = {en} } @article{GouletHanssensRietzeTitovetal.2018, author = {Goulet-Hanssens, Alexis and Rietze, Clemens and Titov, Evgenii and Abdullahu, Leonora and Grubert, Lutz and Saalfrank, Peter and Hecht, Stefan}, title = {Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z -> E Azobenzene Isomerization}, series = {CHEM}, volume = {4}, journal = {CHEM}, number = {7}, publisher = {Cell Press}, address = {Cambridge}, issn = {2451-9294}, doi = {10.1016/j.chempr.2018.06.002}, pages = {1740 -- 1755}, year = {2018}, abstract = {Whereas the reversible reduction of azobenzenes has been known for decades, their oxidation is destructive and as a result has been notoriously overlooked. Here, we show that a chain reaction leading to quantitative Z -> E isomerization can be initiated before reaching the destructive anodic peak potential. This hole-catalyzed pathway is accessible to all azobenzenes, without exception, and offers tremendous advantages over the recently reported reductive, radical-anionic pathway because it allows for convenient chemical initiation without the need for electrochemical setups and in the presence of air. In addition, catalytic amounts of metal-free sensitizers, such as methylene blue, can be used as excited-state electron acceptors, enabling a shift of the excitation wavelength to the far red of the azobenzene absorption (up to 660 nm) and providing quantum yields exceeding unity (up to 200\%). Our approach will boost the efficiency and sensitivity of optically dense liquid-crystalline and solid photo-switchable materials.}, language = {en} } @article{HeidenWirthCampenetal.2018, author = {Heiden, Sophia and Wirth, Jonas and Campen, Richard Kramer and Saalfrank, Peter}, title = {Water molecular beam scattering at alpha-Al2O3(0001)}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b04179}, pages = {15494 -- 15504}, year = {2018}, abstract = {Recent molecular beam experiments have shown that water may adsorb molecularly or dissociatively on an α-Al2O3(0001) surface, with enhanced dissociation probability compared to "pinhole dosing", i.e., adsorption under thermal equilibrium conditions. However, precise information on the ongoing reactions and their relative probabilities is missing. In order to shed light on molecular beam scattering for this system, we perform ab initio molecular dynamics calculations to simulate water colliding with α-Al2O3(0001). We find that single water molecules hitting a cold, clean surface from the gas phase are either reflected, molecularly adsorbed, or dissociated (so-called 1-2 dissociation only). A certain minimum translational energy (above 0.1 eV) seems to be required to enforce dissociation, which may explain the higher dissociation probability in molecular beam experiments. When the surface is heated and/or when refined surface and beam models are applied (preadsorption with water or water fragments, clustering and internal preexcitation in the beam), additional channels open, among them physisorption, water clustering on the surface, and so-called 1-4 and 1-4′ dissociation.}, language = {en} } @article{SchwarzeRiemerHoldt2018, author = {Schwarze, Thomas and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {A Ratiometric Fluorescent Probe for K+ in Water Based on a Phenylaza-18-Crown-6 Lariat Ether}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201802306}, pages = {10116 -- 10121}, year = {2018}, abstract = {This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+/Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+-induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (K-d) value of 38mm in water. Further, for 2+K+, we observed a dual emission behavior at 405 and 505nm. K+ increases the fluorescence intensity of 2 at 405nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a K-d value of approximately 8mm in Na+-free solutions and in combined K+/Na+ solution a similar K-d value of about 9mm was found, reflecting the high K+/Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels.}, language = {en} } @article{SchuermannVogelEbeletal.2018, author = {Sch{\"u}rmann, Robin Mathis and Vogel, Stefanie and Ebel, Kenny and Bald, Ilko}, title = {The physico-chemical basis of DNA radiosensitization}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201800804}, pages = {10271 -- 10279}, year = {2018}, abstract = {High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.}, language = {en} } @article{JiaGaoMeietal.2018, author = {Jia, He and Gao, Haitao and Mei, Shilin and Kneer, Janosch and Lin, Xianzhong and Ran, Qidi and Wang, Fuxian and Palzer, Stefan and Lu, Yan}, title = {Cu2O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {6}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c8tc01995a}, pages = {7249 -- 7256}, year = {2018}, abstract = {There has been long-standing interest in developing metal oxide-based sensors with high sensitivity, selectivity, fast response and low material consumption. Here we report for the first time the utilization of Cu2O@PNIPAM core-shell microgels with a nanocube-shaped core structure for construction of novel CuO gas sensing layers. The hybrid microgels show significant improvement in colloidal stability as compared to native Cu2O nanocubes. Consequently, a homogeneous thin film of Cu2O@PNIPAM nanoparticles can be engineered in a quite low solid content (1.5 wt\%) by inkjet printing of the dispersion at an optimized viscosity and surface tension. Most importantly, thermal treatment of the Cu2O@PNIPAM microgels forms porous CuO nanocubes, which show much faster response to relevant trace NO2 gases than sensors produced from bare Cu2O nanocubes. This outcome is due to the fact that the PNIPAM shell can successfully hinder the aggregation of CuO nanoparticles during pyrolysis, which enables full utilization of the sensor layers and better access of the gas to active sites. These results point out great potential of such an innovative system as gas sensors with low cost, fast response and high sensitivity.}, language = {en} } @article{PoghosyanShahinyanKoetz2018, author = {Poghosyan, Armen H. and Shahinyan, A. A. and Koetz, Joachim}, title = {Catanionic AOT/BDAC micelles on gold {111} surfaces}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {296}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-018-4348-1}, pages = {1301 -- 1306}, year = {2018}, abstract = {A sodium dioctyl sulfosuccinate (AOT)/benzyl hexadecyl dimethyl ammonium chloride (BDAC) mixed micelle self-organization and adsorption on gold Au(111) surfaces have been investigated using a molecular dynamics approach. The spherical AOT/BDAC mixed micelle is strongly adsorbed on the gold surface and is disoriented to a cylinder-like shape.}, language = {en} } @article{StanglmairNeubrechPacholski2018, author = {Stanglmair, Christoph and Neubrech, Frank and Pacholski, Claudia}, title = {Chemical routes to surface enhanced infrared absorption (SEIRA) substrates}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {232}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {9-11}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2018-1132}, pages = {1527 -- 1539}, year = {2018}, abstract = {Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement - leading to surface plasmon resonances from the visible to the infrared wavelength range. Finally, SEIRA enhancement factors are determined. Gold nanoparticle double layers show the best performance as SEIRA substrates.}, language = {en} } @article{RuehlmannBuecheleOstermannetal.2018, author = {R{\"u}hlmann, Madlen and B{\"u}chele, Dominique and Ostermann, Markus and Bald, Ilko and Schmid, Thomas}, title = {Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy}, series = {Spectrochimica Acta Part B: Atomic Spectroscopy}, volume = {146}, journal = {Spectrochimica Acta Part B: Atomic Spectroscopy}, publisher = {Elsevier}, address = {Oxford}, issn = {0584-8547}, doi = {10.1016/j.sab.2018.05.003}, pages = {115 -- 121}, year = {2018}, abstract = {The quantification of the elemental content in soils with laser-induced breakdown spectroscopy (LIBS) is challenging because of matrix effects strongly influencing the plasma formation and LIBS signal. Furthermore, soil heterogeneity at the micrometre scale can affect the accuracy of analytical results. In this paper, the impact of univariate and multivariate data evaluation approaches on the quantification of nutrients in soil is discussed. Exemplarily, results for calcium are shown, which reflect trends also observed for other elements like magnesium, silicon and iron. For the calibration models, 16 certified reference soils were used. With univariate and multivariate approaches, the calcium mass fractions in 60 soils from different testing grounds in Germany were calculated. The latter approach consisted of a principal component analysis (PCA) of adequately pre-treated data for classification and identification of outliers, followed by partial least squares regression (PLSR) for quantification. For validation, the soils were also characterised with inductively coupled plasma optical emission spectroscopy (ICP OES) and X-ray fluorescence (XRF) analysis. Deviations between the LIBS quantification results and the reference analytical results are discussed.}, language = {en} } @misc{JayNorellKunnusetal.2018, author = {Jay, Raphael J. and Norell, Jesper and Kunnus, Kristjan and Lundberg, Marcus and Gaffney, Kelly and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Dynamcis of local charge densities and metal-ligand covalency in iron complexes from femtosecond resonant inelastic soft X-ray scattering}, series = {Abstracts of Papers of the American Chemical Society}, volume = {256}, journal = {Abstracts of Papers of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, url = {http://nbn-resolving.de/urn:nbn:se:uu:diva-370051}, pages = {2}, year = {2018}, language = {en} } @misc{MotaCoelhoLeimkuehleretal.2018, author = {Mota, Cristiano and Coelho, Catarina and Leimk{\"u}hler, Silke and Garattini, Enrico and Terao, Mineko and Santos-Silva, Teresa and Romao, Maria Joao}, title = {Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics}, series = {Coordination chemistry reviews}, volume = {368}, journal = {Coordination chemistry reviews}, publisher = {Elsevier}, address = {Lausanne}, issn = {0010-8545}, doi = {10.1016/j.ccr.2018.04.006}, pages = {35 -- 59}, year = {2018}, abstract = {Aldehyde oxidases are molybdenum and flavin dependent enzymes characterized by a very wide substrate specificity and performing diverse reactions that include oxidations (e.g., aldehydes and azaheterocycles), hydrolysis of amide bonds, and reductions (e.g., nitro, S-oxides and N-oxides). Oxidation reactions and amide hydrolysis occur at the molybdenum site while the reductions are proposed to occur at the flavin site. AOX activity affects the metabolism of different drugs and xenobiotics, some of which designed to resist other liver metabolizing enzymes (e.g., cytochrome P450 monooxygenase isoenzymes), raising its importance in drug development. This work consists of a comprehensive overview on aldehyde oxidases, concerning the genetic evolution of AOX, its diversity among the human population, the crystal structures available, the known catalytic reactions and the consequences in pre-clinical pharmacokinetic and pharmacodynamic studies. Analysis of the different animal models generally used for pre-clinical trials and comparison between the human (hAOX1), mouse homologs as well as the related xanthine oxidase (XOR) are extensively considered. The data reviewed also include a systematic analysis of representative classes of molecules that are hAOX1 substrates as well as of typical and well characterized hAOX1 inhibitors. The considerations made on the basis of a structural and functional analysis are correlated with reported kinetic and metabolic data for typical classes of drugs, searching for potential structural determinants that may dictate substrate and/or inhibitor specificities.}, language = {en} } @article{KarrasDabrowskiPohletal.2018, author = {Karras, Manfred and Dabrowski, Michal and Pohl, Radek and Rybacek, Jiri and Vacek, Jaroslav and Bednarova, Lucie and Grela, Karol and Stary, Ivo and Stara, Irena G. and Schmidt, Bernd}, title = {Helicenes as Chirality-Inducing Groups in Transition-Metal Catalysis}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {43}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201802786}, pages = {10994 -- 10998}, year = {2018}, abstract = {Helical chirality is a novel enantioselectivity-inducing property in transition-metal-catalyzed transformations. The principle is illustrated herein for the example of asymmetric olefin metathesis. This work reports the synthesis of the first helically chiral Ru-NHC alkylidene complex from an aminohelicene-derived imidazolium salt, which was ligated to the first generation Hoveyda-Grubbs catalyst. Kinetic data were acquired for benchmark test reactions and compared to an achiral catalyst. The helically chiral Ru-catalyst was evaluated in asymmetric ring-closing metathesis (RCM) and ring-opening metathesis-cross-metathesis (ROM/CM) reactions, which proceeded with promising levels of enantioselectivity. Extensive NMR-spectroscopic investigations and a DFT geometry optimization were performed. These results led to a topographic steric map and calculation of percent-buried-volume values for each quadrant around the metal center.}, language = {en} }