@article{CajarSchneeweissEngbertetal.2016, author = {Cajar, Anke and Schneeweiß, Paul and Engbert, Ralf and Laubrock, Jochen}, title = {Coupling of attention and saccades when viewing scenes with central and peripheral degradation}, series = {Journal of Vision}, volume = {16}, journal = {Journal of Vision}, number = {2}, publisher = {ARVO}, address = {Rockville, Md.}, issn = {1534-7362}, doi = {10.1167/16.2.8}, pages = {1 -- 19}, year = {2016}, abstract = {Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations.}, language = {en} } @article{CajarEngbertLaubrock2016, author = {Cajar, Anke and Engbert, Ralf and Laubrock, Jochen}, title = {Spatial frequency processing in the central and peripheral visual field during scene viewing}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {127}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2016.05.008}, pages = {186 -- 197}, year = {2016}, abstract = {Visuospatial attention and gaze control depend on the interaction of foveal and peripheral processing. The foveal and peripheral regions of the visual field are differentially sensitive to parts of the spatial frequency spectrum. In two experiments, we investigated how the selective attenuation of spatial frequencies in the central or the peripheral visual field affects eye-movement behavior during real-world scene viewing. Gaze-contingent low-pass or high-pass filters with varying filter levels (i.e., cutoff frequencies; Experiment 1) or filter sizes (Experiment 2) were applied. Compared to unfiltered control conditions, mean fixation durations increased most with central high-pass and peripheral low-pass filtering. Increasing filter size prolonged fixation durations with peripheral filtering, but not with central filtering. Increasing filter level prolonged fixation durations with low-pass filtering, but not with high-pass filtering. These effects indicate that fixation durations are not always longer under conditions of increased processing difficulty. Saccade amplitudes largely adapted to processing difficulty: amplitudes increased with central filtering and decreased with peripheral filtering; the effects strengthened with increasing filter size and filter level. In addition, we observed a trade-off between saccade timing and saccadic selection, since saccade amplitudes were modulated when fixation durations were unaffected by the experimental manipulations. We conclude that interactions of perception and gaze control are highly sensitive to experimental manipulations of input images as long as the residual information can still be accessed for gaze control. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{CajarEngbertLaubrock2016, author = {Cajar, Anke and Engbert, Ralf and Laubrock, Jochen}, title = {Eye movements during gaze-contingent spatial-frequency filtering of real-world scenes: Effects of filter location, cutoff, and size}, series = {Perception}, volume = {45}, journal = {Perception}, publisher = {Sage Publ.}, address = {London}, issn = {0301-0066}, pages = {126 -- 126}, year = {2016}, language = {en} } @article{CajarSchneeweissEngbertetal.2016, author = {Cajar, Anke and Schneeweiss, Paul and Engbert, Ralf and Laubrock, Jochen}, title = {Coupling of attention and saccades when viewing scenes with central and peripheral degradation}, series = {Journal of vision}, volume = {16}, journal = {Journal of vision}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/16.2.8}, pages = {19}, year = {2016}, abstract = {Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations.}, language = {en} }