@article{MargoldJansenGurinovetal.2016, author = {Margold, Martin and Jansen, John D. and Gurinov, Artem L. and Codilean, Alexandru T. and Fink, David and Preusser, Frank and Reznichenko, Natalya V. and Mifsud, Charles}, title = {Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {132}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.11.018}, pages = {161 -- 174}, year = {2016}, abstract = {Successively smaller glacial extents have been proposed for continental Eurasia during the stadials of the last glacial period leading up to the Last Glacial Maximum (LGM). At the same time the large mountainous region east of Lake Baikal, Transbaikalia, has remained unexplored in terms of glacial chronology despite clear geomorphological evidence of substantial past glaciations. We have applied cosmogenic Be-10 exposure dating and optically stimulated luminescence to establish the first quantitative glacial chronology for this region. Based on eighteen exposure ages from five moraine complexes, we propose that large mountain ice fields existed in the Kodar and Udokan mountains during Oxygen Isotope Stage 2, commensurate with the global LGM. These ice fields fed valley glaciers (>100 km in length) reaching down to the Chara Depression between the Kodar and Udokan mountains and to the valley of the Vitim River northwest of the Kodar Mountains. Two of the investigated moraines date to the Late Glacial, but indications of incomplete exposure among some of the sampled boulders obscure the specific details of the post-LGM glacial history. In addition to the LGM ice fields in the highest mountains of Transbaikalia, we report geomorphological evidence of a much more extensive, ice-cap type glaciation at a time that is yet to be firmly resolved. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{EugsterScherlerThiedeetal.2016, author = {Eugster, Patricia and Scherler, Dirk and Thiede, Rasmus Christoph and Codilean, Alexandru T. and Strecker, Manfred}, title = {Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: New insights from Be-10-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL066077}, pages = {1589 -- 1597}, year = {2016}, abstract = {Despite a large number of dated glacial landforms in the Himalaya, the ice extent during the global Last Glacial Maximum (LGM) from 19 to 23 ka is only known to first order. New cosmogenic Be-10 exposure ages from well-preserved glacially polished surfaces, combined with published data, and an improved production rate scaling model allow reconstruction of the LGM ice extent and subsequent deglaciation in the Chandra Valley of NW India. We show that a >1000 m thick valley glacier retreated >150 km within a few thousand years after the onset of LGM deglaciation. By comparing the recession of the Chandra Valley Glacier and other Himalayan glaciers with those of Northern and Southern Hemisphere glaciers, we demonstrate that post-LGM deglaciation was similar and nearly finished prior to the Bolling/Allerod interstadial. Our study supports the view that many Himalayan glaciers advanced during the LGM, likely in response to global variations in temperature.}, language = {en} } @article{MunackBloetheFueloepetal.2016, author = {Munack, Henry and Bl{\"o}the, Jan Henrik and F{\"u}l{\"o}p, R. H. and Codilean, Alexandru T. and Fink, D. and Korup, Oliver}, title = {Recycling of Pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {149}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.07.030}, pages = {122 -- 134}, year = {2016}, language = {en} }