@article{TitovGranucciGoetzeetal.2016, author = {Titov, Evgenii and Granucci, Giovanni and Goetze, Jan Philipp and Persico, Maurizio and Saalfrank, Peter}, title = {Dynamics of Azobenzene Dimer Photoisomerization: Electronic and Steric Effects}, series = {The journal of physical chemistry letters}, volume = {7}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpciett.6b01401}, pages = {3591 -- 3596}, year = {2016}, abstract = {While azobenzenes readily photoswitch in solution, their photoisomerization in densely packed self-assembled monolayers (SAMs) can be suppressed. Reasons for this can be steric hindrance and/or electronic quenching, e.g., by exciton coupling. We address these possibilities by means of nonadiabatic molecular dynamics with trajectory surface hopping calculations, investigating the trans -> cis isomerization of azobenzene after excitation into the pi pi* absorption band. We consider a free monomer, an isolated dimer and a dimer embedded in a SAM-like environment of additional azobenzene molecules, imitating in this way the gradual transition from an unconstrained over an electronically coupled to an electronically coupled and sterically hindered, molecular switch. Our simulations reveal that in comparison to the single molecule the quantum yield of the trans -> cis photoisomerization is similar for the isolated dimer, but greatly reduced in the sterically constrained situation. Other implications of dimerization and steric constraints are also discussed.}, language = {en} }