@article{TadaGrossart2014, author = {Tada, Yuya and Grossart, Hans-Peter}, title = {Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method}, series = {The ISME journal : multidisciplinary journal of microbial ecology}, volume = {8}, journal = {The ISME journal : multidisciplinary journal of microbial ecology}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {1751-7362}, doi = {10.1038/ismej.2013.148}, pages = {441 -- 454}, year = {2014}, abstract = {In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.}, language = {en} } @article{EngelPiontekGrossartetal.2014, author = {Engel, Anja and Piontek, Judith and Grossart, Hans-Peter and Riebesell, Ulf and Schulz, Kai Georg and Sperling, Martin}, title = {Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbt125}, pages = {641 -- 657}, year = {2014}, abstract = {A mesocosm experiment was conducted to investigate the impact of rising fCO(2) on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (similar to 38 mA(3) each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 A mu atm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (> 1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO(2,) higher Delta POC:Delta PON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO(2). We conclude that increasing fCO(2) supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.}, language = {en} } @article{BickelTangGrossart2014, author = {Bickel, Samantha L. and Tang, Kam W. and Grossart, Hans-Peter}, title = {Structure and function of zooplankton-associated bacterial communities in a temperate estuary change more with time than with zooplankton species}, series = {Aquatic microbial ecology : international journal}, volume = {72}, journal = {Aquatic microbial ecology : international journal}, number = {1}, publisher = {Institute of Mathematical Statistics}, address = {Oldendorf Luhe}, issn = {0948-3055}, doi = {10.3354/ame01676}, pages = {1 -- 15}, year = {2014}, abstract = {Zooplankton support distinct bacterial communities in high concentrations relative to the surrounding water, but little is known about how the compositions and functionalities of these bacterial communities change through time in relation to environmental conditions. We conducted a year-long field study of bacterial communities associated with common zooplankton groups as well as free-living bacterial communities in the York River, a tributary of Chesapeake Bay. Bacterial community genetic fingerprints and their carbon substrate usage were examined by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA and by Biolog EcoPlates, respectively. Zooplankton-associated communities were genetically distinct from free-living bacterial communities but utilized a similar array of carbon substrates. On average, bacteria associated with different zooplankton groups were genetically more similar to each other within each month (65.4\% similarity) than to bacterial communities of the same zooplankton group from different months (28 to 30\% similarity), which suggests the importance of ambient environmental conditions in shaping resident zooplankton-associated bacterial communities. Monthly changes in carbon substrate utilization were less variable for zooplankton-associated bacteria than for free-living bacteria, suggesting that the zooplankton microhabitat is more stable than the surrounding water and supports specific bacterial groups in the otherwise unfavorable conditions in the water column.}, language = {en} } @article{TangMcGinnisFrindteetal.2014, author = {Tang, Kam W. and McGinnis, Daniel F. and Frindte, Katharina and Bruchert, Volker and Grossart, Hans-Peter}, title = {Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters}, series = {Limnology and oceanography}, volume = {59}, journal = {Limnology and oceanography}, number = {1}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2014.59.1.0275}, pages = {275 -- 284}, year = {2014}, abstract = {The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water was up to 5 mmol m(-2) d(-1). Mid-water methane oversaturation was also observed in nine other lakes that collectively showed a strongly negative gradient of methane concentration within 0-20\% dissolved oxygen (DO) in the bottom water, and a positive gradient within >= 20\% DO in the upper water column. Further investigation into the responsible organisms and biochemical pathways will help improve our understanding of the global methane cycle.}, language = {en} } @article{GarciaMcMahonGrossartetal.2014, author = {Garcia, Sarahi L. and McMahon, Katherine D. and Grossart, Hans-Peter and Warnecke, Falk}, title = {Successful enrichment of the ubiquitous freshwater acI Actinobacteria}, series = {Environmental microbiology reports}, volume = {6}, journal = {Environmental microbiology reports}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.12104}, pages = {21 -- 27}, year = {2014}, abstract = {Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for >50\% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acIActinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed.}, language = {en} } @article{SalkaWurzbacherGarciaetal.2014, author = {Salka, Ivette and Wurzbacher, Christian and Garcia, Sarahi L. and Labrenz, Matthias and Juergens, Klaus and Grossart, Hans-Peter}, title = {Distribution of acI-Actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters}, series = {Environmental microbiology}, volume = {16}, journal = {Environmental microbiology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1462-2912}, pages = {586 -- 597}, year = {2014}, language = {en} } @article{LeunertEckertPauletal.2014, author = {Leunert, Franziska and Eckert, Werner and Paul, Andrea and Gerhardt, Volkmar and Grossart, Hans-Peter}, title = {Phytoplankton response to UV-generated hydrogen peroxide from natural organic matter}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbt096}, pages = {185 -- 197}, year = {2014}, abstract = {In aquatic systems, natural organic matter (NOM) and in particular humic substances effectively absorb the ultraviolet (UV)/visible light spectrum of solar radiation and act as a photoprotective filter for organisms. Simultaneously, UV contributes to the generation of potentially harmful reactive oxygen species (ROS). Dose-response experiments were conducted on cyanobacteria and green algae with hydrogen peroxide (H2O2) as a long-lived representative of ROS. Delayed fluorescence (DF) decay kinetics was used as a non-invasive tool to follow changes of phytoplankton activity in real time. In order to investigate phototoxicity and photoprotection by NOM on phytoplankton, we exposed algae to UV-pre-irradiated NOM and direct UV excitation. Cyanobacteria responded to H2O2 concentrations as low as 10(-7) M, while green algae were 2 orders of magnitude less sensitive. UV irradiation of medium with NOM generated H2O2 concentrations of 1.5 x 10(-7) to 3.6 x 10(-7) M. When exposed to these concentrations, only the DF of cyanobacteria led to a measurable effect while that of green algae did not change. The addition of NOM protected all phytoplankton from direct UV irradiation, but cyanobacteria benefitted less. From this we conclude that UV-irradiated water enriched with NOM can adversely affect the physiology of cyanobacteria, but not of green algae, which might control phytoplankton composition and species-specific activities.}, language = {en} }