@article{TurhanSaracGencturketal.2012, author = {Turhan, Metehan C. and Sarac, A. Sezai and Gencturk, Asli and Gilsing, Hans-Detlev and Faltz, Heike and Schulz, Burkhard}, title = {Electrochemical impedance characterization and potential dependence of poly[3,4-(2,2-dibutylpropylenedioxy)thiophene] nanostructures on single carbon fiber microelectrode}, series = {Synthetic metals : the journal of electronic polymers and electronic molecular materials}, volume = {162}, journal = {Synthetic metals : the journal of electronic polymers and electronic molecular materials}, number = {5-6}, publisher = {Elsevier}, address = {Lausanne}, issn = {0379-6779}, doi = {10.1016/j.synthmet.2012.01.012}, pages = {511 -- 515}, year = {2012}, abstract = {The electropolymerization of 3,4-(2,2-dibutylpropylenedioxy)thiophene (ProDOT-Bu-2) onto single carbon fiber microelectrode (SCFME) was conducted in acetonitrile (ACN) containing sodium perchlorate (NaClO4) as electrolyte and investigated by cyclic voltammetry (CV). The nanostructured films of poly[3,4-(2,2-dibutyl-propyleneclioxy)thiophene] (PProDOT-Bu-2) which were depositing showed complete reversible redox behavior in monomer-free electrolyte solution. The capacitive behavior of the films was investigated by electrochemical impedance spectroscopy (EIS) at applied potentials from 0.1 V to 1.3 V. The analysis by equivalent circuit modeling revealed an applied potential around 0.4V to be most suitable for the system PProDOT-Bu-2/SCFME as a double layer supercapacitor component inducing a double layer capacitance C-d, value of 62 mFcm(-2).}, language = {en} } @article{GulerGilsingSchulzetal.2012, author = {Guler, Fatma G. and Gilsing, Hans-Detlev and Schulz, Burkhard and Sarac, A. Sezai}, title = {Impedance and morphology of hydroxy- and chloro-functionalized poly(3,4-propylenedioxythiophene) nanostructures}, series = {Journal of nanoscience and nanotechnolog}, volume = {12}, journal = {Journal of nanoscience and nanotechnolog}, number = {10}, publisher = {American Scientific Publ.}, address = {Valencia}, issn = {1533-4880}, doi = {10.1166/jnn.2012.6594}, pages = {7869 -- 7878}, year = {2012}, abstract = {The new 3,4-propylenedioxythiophenes (ProDOT) bearing hydroxy- or chloro-functionalized side chains of varying length and polarity were synthesized and electropolymerized on single carbon fiber microelectrode (SCFME) using cyclo-voltammetry. Electrochemical impedance spectroscopy (EIS) revealed highest capacitance values for the hydroxy-functionalized Poly 5 carrying a side chain of medium length. The EIS data were fitted with an equivalent electrical circuit giving a good correlation. AFM analysis of the topography showed higher roughness values for Poly 5 than for the two other polymers bearing longer side chains. Due to their reactive end groups the polymers should be useful for post-polymerization functionalization of the electrode surface.}, language = {en} }