@article{WinkelmannLevermannMartinetal.2012, author = {Winkelmann, Ricarda and Levermann, Anders and Martin, Maria A. and Frieler, Katja}, title = {Increased future ice discharge from Antarctica owing to higher snowfall}, series = {Nature : the international weekly journal of science}, volume = {492}, journal = {Nature : the international weekly journal of science}, number = {7428}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature11616}, pages = {239 -- +}, year = {2012}, abstract = {Anthropogenic climate change is likely to cause continuing global sea level rise(1), but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss(2,3) and ocean expansion(4). Uncertainties exist in modelled snowfall(5), but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica(1,6) and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model(7) forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.}, language = {en} } @article{AlbrechtLevermann2012, author = {Albrecht, Torsten and Levermann, Anders}, title = {Fracture field for large-scale ice dynamics}, series = {Journal of glaciology}, volume = {58}, journal = {Journal of glaciology}, number = {207}, publisher = {International Glaciological Society}, address = {Cambridge}, issn = {0022-1430}, doi = {10.3189/2012JoG11J191}, pages = {165 -- 176}, year = {2012}, abstract = {Recent observations and modeling studies emphasize the crucial role of fracture mechanics for the stability of ice shelves and thereby the evolution of ice sheets. Here we introduce a macroscopic fracture-density field into a prognostic continuum ice-flow model and compute its evolution incorporating the initiation and growth of fractures as well as their advection with two-dimensional ice flow. To a first approximation, fracture growth is assumed to depend on the spreading rate only, while fracture initiation is defined in terms of principal stresses. The inferred fracture-density fields compare well with observed elongate surface structures. Since crevasses and other deep-reaching fracture structures have been shown to influence the overall ice-shelf dynamics, we propose the fracture-density field introduced here be used as a measure for ice softening and decoupling of the ice flow in fracture-weakened zones. This may yield more accurate and realistic velocity patterns in prognostic simulations. Additionally, the memory of past fracture events links the calving front to the upstream dynamics. Thus the fracture-density field proposed here may be employed in fracture-based calving parameterizations. The aim of this study is to introduce the field and investigate which of the observed surface structures can be reproduced by the simplest physically motivated fracture source terms.}, language = {en} } @article{SchneidervonDeimlingMeinshausenLevermannetal.2012, author = {Schneider von Deimling, Thomas and Meinshausen, Malte and Levermann, Anders and Huber, Veronika and Frieler, Katja and Lawrence, D. M. and Brovkin, Victor}, title = {Estimating the near-surface permafrost-carbon feedback on global warming}, series = {Biogeosciences}, volume = {9}, journal = {Biogeosciences}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-9-649-2012}, pages = {649 -- 665}, year = {2012}, abstract = {Thawing of permafrost and the associated release of carbon constitutes a positive feedback in the climate system, elevating the effect of anthropogenic GHG emissions on global-mean temperatures. Multiple factors have hindered the quantification of this feedback, which was not included in climate carbon-cycle models which participated in recent model intercomparisons (such as the Coupled Carbon Cycle Climate Model Intercomparison Project - (CMIP)-M-4). There are considerable uncertainties in the rate and extent of permafrost thaw, the hydrological and vegetation response to permafrost thaw, the decomposition timescales of freshly thawed organic material, the proportion of soil carbon that might be emitted as carbon dioxide via aerobic decomposition or as methane via anaerobic decomposition, and in the magnitude of the high latitude amplification of global warming that will drive permafrost degradation. Additionally, there are extensive and poorly characterized regional heterogeneities in soil properties, carbon content, and hydrology. Here, we couple a new permafrost module to a reduced complexity carbon-cycle climate model, which allows us to perform a large ensemble of simulations. The ensemble is designed to span the uncertainties listed above and thereby the results provide an estimate of the potential strength of the feedback from newly thawed permafrost carbon. For the high CO2 concentration scenario (RCP8.5), 33-114 GtC (giga tons of Carbon) are released by 2100 (68\% uncertainty range). This leads to an additional warming of 0.04-0.23 degrees C. Though projected 21st century permafrost carbon emissions are relatively modest, ongoing permafrost thaw and slow but steady soil carbon decomposition means that, by 2300, about half of the potentially vulnerable permafrost carbon stock in the upper 3 m of soil layer (600-1000 GtC) could be released as CO2, with an extra 1-4\% being released as methane. Our results also suggest that mitigation action in line with the lower scenario RCP3-PD could contain Arctic temperature increase sufficiently that thawing of the permafrost area is limited to 9-23\% and the permafrost-carbon induced temperature increase does not exceed 0.04-0.16 degrees C by 2300.}, language = {en} } @article{MengelLevermannSchleussneretal.2012, author = {Mengel, Matthias and Levermann, Anders and Schleussner, Carl-Friedrich and Born, Andreas}, title = {Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model}, series = {Earth system dynamics}, volume = {3}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-3-189-2012}, pages = {189 -- 197}, year = {2012}, abstract = {Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.}, language = {en} } @article{ScheweLevermann2012, author = {Schewe, Jacob and Levermann, Anders}, title = {A statistically predictive model for future monsoon failure in India}, series = {Environmental research letters}, volume = {7}, journal = {Environmental research letters}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/7/4/044023}, pages = {9}, year = {2012}, abstract = {Indian monsoon rainfall is vital for a large share of the world's population. Both reliably projecting India's future precipitation and unraveling abrupt cessations of monsoon rainfall found in paleorecords require improved understanding of its stability properties. While details of monsoon circulations and the associated rainfall are complex, full-season failure is dominated by large-scale positive feedbacks within the region. Here we find that in a comprehensive climate model, monsoon failure is possible but very rare under pre-industrial conditions, while under future warming it becomes much more frequent. We identify the fundamental intraseasonal feedbacks that are responsible for monsoon failure in the climate model, relate these to observational data, and build a statistically predictive model for such failure. This model provides a simple dynamical explanation for future changes in the frequency distribution of seasonal mean all-Indian rainfall. Forced only by global mean temperature and the strength of the Pacific Walker circulation in spring, it reproduces the trend as well as the multidecadal variability in the mean and skewness of the distribution, as found in the climate model. The approach offers an alternative perspective on large-scale monsoon variability as the result of internal instabilities modulated by pre-seasonal ambient climate conditions.}, language = {en} } @article{FuerstLevermann2012, author = {F{\"u}rst, Johannes J. and Levermann, Anders}, title = {A minimal model for wind- and mixing-driven overturning threshold behavior for both driving mechanisms}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {38}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {1-2}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-011-1003-7}, pages = {239 -- 260}, year = {2012}, abstract = {We present a minimal conceptual model for the Atlantic meridional overturning circulation which incorporates the advection of salinity and the basic dynamics of the oceanic pycnocline. Four tracer transport processes following Gnanadesikan in Science 283(5410):2077-2079, (1999) allow for a dynamical adjustment of the oceanic pycnocline which defines the vertical extent of a mid-latitudinal box. At the same time the model captures the salt-advection feedback (Stommel in Tellus 13(2):224-230, (1961)). Due to its simplicity the model can be solved analytically in the purely wind- and purely mixing-driven cases. We find the possibility of abrupt transition in response to surface freshwater forcing in both cases even though the circulations are very different in physics and geometry. This analytical approach also provides expressions for the critical freshwater input marking the change in the dynamics of the system. Our analysis shows that including the pycnocline dynamics in a salt-advection model causes a decrease in the freshwater sensitivity of its northern sinking up to a threshold at which the circulation breaks down. Compared to previous studies the model is restricted to the essential ingredients. Still, it exhibits a rich behavior which reaches beyond the scope of this study and might be used as a paradigm for the qualitative behaviour of the Atlantic overturning in the discussion of driving mechanisms.}, language = {en} }