@phdthesis{Klier2016, author = {Klier, Dennis Tobias}, title = {Upconversion luminescence in Er-codoped NaYF4 nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98486}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2016}, abstract = {In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature.}, language = {en} } @misc{PlehnMegowMay2014, author = {Plehn, Thomas and Megow, J{\"o}rg and May, Volkhard}, title = {Concerted charge and energy transfer processes in a highly flexible fullerene-dye system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98791}, pages = {10}, year = {2014}, abstract = {Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum-classical version of the F{\"o}rster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye-fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained.}, language = {en} } @misc{SchottKretzschmarAckeretal.2014, author = {Schott, Juliane and Kretzschmar, Jerome and Acker, Margret and Eidner, Sascha and Kumke, Michael Uwe and Drobot, Bj{\"o}rn and Barkleit, Astrid and Taut, Steffen and Brendler, Vinzenz and Stumpf, Thorsten}, title = {Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98774}, pages = {13}, year = {2014}, abstract = {In the presence of polyborates (detected by 11B-NMR) the formation of a weak Eu(III) borate complex (lg β11 ∼ 2, estimated) was observed by time-resolved laser-induced fluorescence spectroscopy (TRLFS). This complex is a precursor for the formation of a solid Eu(III) borate species. The formation of this solid in solution was investigated by TRLFS as a function of the total boron concentration: the lower the total boron concentration, the slower is the solid formation. The solid Eu(III) borate was characterized by IR spectroscopy, powder XRD and solid-state TRLFS. The determination of the europium to boron ratio portends the existence of pentaborate units in the amorphous solid.}, language = {en} } @misc{SarauliXuDietzeletal.2014, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98744}, year = {2014}, abstract = {A feasible approach to construct multilayer films of sulfonated polyanilines - PMSA1 and PABMSA1 - containing different ratios of aniline, 2-methoxyaniline-5-sulfonic acid (MAS) and 3-aminobenzoic acid (AB), with the entrapped redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on Au and ITO electrode surfaces, is described. The formation of layers has been followed and confirmed by electrochemical impedance spectroscopy (EIS), which demonstrates that the multilayer assembly can be achieved in a progressive and uniform manner. The gold and ITO electrodes subsequently modified with PMSA1:PQQ-GDH and PABMSA1 films are studied by cyclic voltammetry (CV) and UV-Vis spectroscopy which show a significant direct bioelectrocatalytical response to the oxidation of the substrate glucose without any additional mediator. This response correlates linearly with the number of deposited layers. Furthermore, the constructed polymer/enzyme multilayer system exhibits a rather good long-term stability, since the catalytic current response is maintained for more than 60\% of the initial value even after two weeks of storage. This verifies that a productive interaction of the enzyme embedded in the film of substituted polyaniline can be used as a basis for the construction of bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction.}, language = {en} } @misc{ErmeydanCabaneGierlingeretal.2014, author = {Ermeydan, Mahmut Ali and Cabane, Etienne and Gierlinger, Notburga and Koetz, Joachim and Burgert, Ingo}, title = {Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98736}, pages = {8}, year = {2014}, abstract = {As an engineering material derived from renewable resources, wood possesses excellent mechanical properties in view of its light weight but also has some disadvantages such as low dimensional stability upon moisture changes and low durability against biological attack. Polymerization of hydrophobic monomers in the cell wall is one of the potential approaches to improve the dimensional stability of wood. A major challenge is to insert hydrophobic monomers into the hydrophilic environment of the cell walls, without increasing the bulk density of the material due to lumen filling. Here, we report on an innovative and simple method to insert styrene monomers into tosylated cell walls (i.e. -OH groups from natural wood polymers are reacted with tosyl chloride) and carry out free radical polymerization under relatively mild conditions, generating low wood weight gains. In-depth SEM and confocal Raman microscopy analysis are applied to reveal the distribution of the polystyrene in the cell walls and the lumen. The embedding of polystyrene in wood results in reduced water uptake by the wood cell walls, a significant increase in dimensional stability, as well as slightly improved mechanical properties measured by nanoindentation.}, language = {en} } @phdthesis{Couturier2016, author = {Couturier, Jean-Philippe}, title = {New inverse opal hydrogels as platform for detecting macromolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98412}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 132, XXXVIII}, year = {2016}, abstract = {In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit - analyte model systems, such as benzoboroxole - 1,2-diols, biotin - avidin and mannose - concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations.}, language = {en} } @misc{SchulzeKoetz2016, author = {Schulze, Nicole and Koetz, Joachim}, title = {Kinetically Controlled Growth of Gold Nanotriangles in a Vesicular Template Phase by Adding a Strongly Alternating Polyampholyte}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98380}, pages = {22}, year = {2016}, abstract = {This paper is focused on the temperature dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholin and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in presence of the polyampholyte at 45 °C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45 °C. Corresponding zeta potential measurements indicate that a temperature dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.}, language = {en} } @misc{ErmeydanCabaneHassetal.2014, author = {Ermeydan, Mahmut Ali and Cabane, Etienne and Hass, Philipp and Koetz, Joachim and Burgert, Ingo}, title = {Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97265}, pages = {3313 -- 3321}, year = {2014}, abstract = {Materials derived from renewable resources are highly desirable in view of more sustainable manufacturing. Among the available natural materials, wood is one of the key candidates, because of its excellent mechanical properties. However, wood and wood-based materials in engineering applications suffer from various restraints, such as dimensional instability upon humidity changes. Several wood modification treatments increase water repellence, but the insertion of hydrophobic polymers can result in a composite material which cannot be considered as renewable anymore. In this study, we report on the grafting of the fully biodegradable poly(ε-caprolactone) (PCL) inside the wood cell walls by Sn(Oct)2 catalysed ring-opening polymerization (ROP). The presence of polyester chains within the wood cell wall structure is monitored by confocal Raman imaging and spectroscopy as well as scanning electron microscopy. Physical tests reveal that the modified wood is more hydrophobic due to the bulking of the cell wall structure with the polyester chains, which results in a novel fully biodegradable wood material with improved dimensional stability.}, language = {en} } @misc{CywińskiNonoCharbonniereetal.2014, author = {Cywiński, Piotr J. and Nono, Katia Nchimi and Charbonni{\`e}re, Lo{\"i}c J. and Hammann, Tommy and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95390}, pages = {6060 -- 6067}, year = {2014}, abstract = {A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved F{\"o}rster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surface-functionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with F{\"o}rster theory, F{\"o}rster-radii (R0) were found to be around 60 {\AA} for organic dyes and around 105 {\AA} for QDs. The FRET efficiency (η) reached 80\% and 25\% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 {\AA} for organic dye acceptors, while for acceptor QDs between 120 {\AA} and 145 {\AA}. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing.}, language = {en} } @misc{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97087}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @phdthesis{Riebe2016, author = {Riebe, Daniel}, title = {Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94632}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2016}, abstract = {The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization - REMPI, electrospray ionization - ESI, atmospheric pressure chemical ionization - APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized.}, language = {en} } @misc{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95852}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @misc{OlejkoCywińskiBald2016, author = {Olejko, Lydia and Cywiński, P. J. and Bald, Ilko}, title = {An ion-controlled four-color fluorescent telomeric switch on DNA origami structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95831}, pages = {10339 -- 10347}, year = {2016}, abstract = {The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using F{\"o}rster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter.}, language = {en} } @misc{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95810}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @misc{InalKoelschChiappisietal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95379}, pages = {6603 -- 6612}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} } @misc{LiBabuTurneretal.2013, author = {Li, Hongguang and Babu, Sukumaran Santhosh and Turner, Sarah T. and Neher, Dieter and Hollamby, Martin J. and Seki, Tomohiro and Yagai, Shiki and Deguchi, Yonekazu and M{\"o}hwald, Helmuth and Nakanishi, Takashi}, title = {Alkylated-C60 based soft materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95358}, pages = {1943 -- 1951}, year = {2013}, abstract = {Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84 °C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ± 0.1\%) in comparison with another compound, 10 (PCE: 0.5 ± 0.1\%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices.}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{MenSiebenbuergerQiuetal.2013, author = {Men, Yongjun and Siebenb{\"u}rger, Miriam and Qiu, Xunlin and Antonietti, Markus and Yuan, Jiayin}, title = {Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95250}, pages = {11887 -- 11887}, year = {2013}, abstract = {Sugar-based molecules and polysaccharide biomass can be turned into porous functional carbonaceous products at comparably low temperatures of 400 °C under a nitrogen atmosphere in the presence of an ionic liquid (IL) or a poly(ionic liquid) (PIL). The IL and PIL act as "activation agents" with own structural contribution, and effectively promote the conversion and pore generation in the biomaterials even at a rather low doping ratio (7 wt\%). In addition, this "induced carbonization" and pore forming phenomenon enables the preservation of the biotemplate shape to the highest extent and was employed to fabricate shaped porous carbonaceous materials from carbohydrate-based biotemplates, exemplified here with cellulose filter membranes, coffee filter paper and natural cotton. These carbonized hybrids exhibit comparably good mechanical properties, such as bendability of membranes or shape recovery of foams. Moreover, the nitrogen atoms incorporated in the final products from the IL/PIL precursors further improve the oxidation stability in the fire-retardant tests.}, language = {en} } @misc{DiFlorioBruendermannYadavallietal.2013, author = {Di Florio, Giuseppe and Br{\"u}ndermann, Erik and Yadavalli, Nataraja Sekhar and Santer, Svetlana and Havenith, Martina}, title = {Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95233}, pages = {1544 -- 1554}, year = {2013}, abstract = {We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy.}, language = {en} } @misc{McQuadeO'BrienDoerretal.2013, author = {McQuade, D. Tyler and O'Brien, Alexander G. and D{\"o}rr, Markus and Rajaratnam, Rajathees and Eisold, Ursula and Monnanda, Bopanna and Nobuta, Tomoya and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Meggers, Eric and Seeberger, Peter H.}, title = {Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95214}, pages = {4067 -- 4070}, year = {2013}, abstract = {Pyridocarbazoles when ligated to transition metals yield high affinity kinase inhibitors. While batch photocyclizations enable the synthesis of these heterocycles, the non-oxidative Mallory reaction only provides modest yields and difficult to purify mixtures. We demonstrate here that a flow-based Mallory cyclization provides superior results and enables observation of a clear isobestic point. The flow method allowed us to rapidly synthesize ten pyridocarbazoles and for the first time to document their interesting photophysical attributes. Preliminary characterization reveals that these molecules might be a new class of fluorescent bioprobe.}, language = {en} } @misc{TheteRojasNeumeyeretal.2013, author = {Thete, Aniket and Rojas, Oscar and Neumeyer, David and Koetz, Joachim and Dujardin, Erik}, title = {Ionic liquid-assisted morphosynthesis of gold nanorods using polyethyleneimine-capped seeds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95196}, pages = {14294 -- 14298}, year = {2013}, abstract = {Seed-mediated gold nanorods with tunable lengths are prepared using new polyethyleneimine-capped gold nanoparticles synthesized in ionic liquid. The effect of polyethyleneimine and ionic liquid during nanorod growth is investigated and shows a marked effect on their final aspect ratio.}, language = {en} } @misc{JungingerKuebelSchacheretal.2013, author = {Junginger, Mathias and K{\"u}bel, Christian and Schacher, Felix H. and M{\"u}ller, Axel H. E. and Taubert, Andreas}, title = {Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95176}, pages = {11301 -- 11308}, year = {2013}, abstract = {Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate.}, language = {en} } @misc{ThielZehbeRoeseretal.2013, author = {Thiel, Kerstin and Zehbe, Rolf and Roeser, Jer{\^o}m{\´e} and Strauch, Peter and Enthaler, Stephan and Thomas, Arne}, title = {A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95118}, pages = {1848 -- 1856}, year = {2013}, abstract = {A polymer analogous reaction was carried out to generate a porous polymeric network with N-heterocyclic carbenes (NHC) in the polymer backbone. Using a stepwise approach, first a polyimine network is formed by polymerization of the tetrafunctional amine tetrakis(4-aminophenyl)methane. This polyimine network is converted in the second step into polyimidazolium chloride and finally to a polyNHC network. Furthermore a porous Cu(II)-coordinated polyNHC network can be generated. Supercritical drying generates polymer networks with high permanent surface areas and porosities which can be applied for different catalytic reactions. The catalytic properties were demonstrated for example in the activation of CO2 or in the deoxygenation of sulfoxides to the corresponding sulfides.}, language = {en} } @misc{SchmidtElizarovBergeretal.2013, author = {Schmidt, Bernd and Elizarov, Nelli and Berger, Ren{\´e} and H{\"o}lter, Frank}, title = {Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95070}, pages = {3674 -- 3691}, year = {2013}, abstract = {4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.}, language = {en} } @misc{SchmidtHauke2013, author = {Schmidt, Bernd and Hauke, Sylvia}, title = {Cross metathesis of allyl alcohols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95037}, pages = {4194 -- 4206}, year = {2013}, abstract = {Under standard conditions the cross metathesis of allyl alcohols and methyl acrylate is accompanied by the formation of ketones, resulting from uncontrolled and undesired double bond isomerization. By conducting the CM in the presence of phenol, the catalyst loading and the reaction time required for quantiative conversion can be reduced, and isomerization can be suppressed. On the other hand, consecutive isomerization can be deliberately promoted by evaporating excess methyl acrylate after completing cross metathesis and by adding a base or silane as chemical triggers.}, language = {en} } @misc{WinterThielZabeletal.2013, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andr{\´e} and Klamroth, Tillmann and P{\"o}ppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95012}, pages = {1019 -- 1030}, year = {2013}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2- moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2- anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @phdthesis{Ulaganathan2016, author = {Ulaganathan, Vamseekrishna}, title = {Molecular fundamentals of foam fractionation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94263}, school = {Universit{\"a}t Potsdam}, pages = {ix, 136}, year = {2016}, abstract = {Foam fractionation of surfactant and protein solutions is a process dedicated to separate surface active molecules from each other due to their differences in surface activities. The process is based on forming bubbles in a certain mixed solution followed by detachment and rising of bubbles through a certain volume of this solution, and consequently on the formation of a foam layer on top of the solution column. Therefore, systematic analysis of this whole process comprises of at first investigations dedicated to the formation and growth of single bubbles in solutions, which is equivalent to the main principles of the well-known bubble pressure tensiometry. The second stage of the fractionation process includes the detachment of a single bubble from a pore or capillary tip and its rising in a respective aqueous solution. The third and final stage of the process is the formation and stabilization of the foam created by these bubbles, which contains the adsorption layers formed at the growing bubble surface, carried up and gets modified during the bubble rising and finally ends up as part of the foam layer. Bubble pressure tensiometry and bubble profile analysis tensiometry experiments were performed with protein solutions at different bulk concentrations, solution pH and ionic strength in order to describe the process of accumulation of protein and surfactant molecules at the bubble surface. The results obtained from the two complementary methods allow understanding the mechanism of adsorption, which is mainly governed by the diffusional transport of the adsorbing protein molecules to the bubble surface. This mechanism is the same as generally discussed for surfactant molecules. However, interesting peculiarities have been observed for protein adsorption kinetics at sufficiently short adsorption times. First of all, at short adsorption times the surface tension remains constant for a while before it decreases as expected due to the adsorption of proteins at the surface. This time interval is called induction time and it becomes shorter with increasing protein bulk concentration. Moreover, under special conditions, the surface tension does not stay constant but even increases over a certain period of time. This so-called negative surface pressure was observed for BCS and BLG and discussed for the first time in terms of changes in the surface conformation of the adsorbing protein molecules. Usually, a negative surface pressure would correspond to a negative adsorption, which is of course impossible for the studied protein solutions. The phenomenon, which amounts to some mN/m, was rather explained by simultaneous changes in the molar area required by the adsorbed proteins and the non-ideality of entropy of the interfacial layer. It is a transient phenomenon and exists only under dynamic conditions. The experiments dedicated to the local velocity of rising air bubbles in solutions were performed in a broad range of BLG concentration, pH and ionic strength. Additionally, rising bubble experiments were done for surfactant solutions in order to validate the functionality of the instrument. It turns out that the velocity of a rising bubble is much more sensitive to adsorbing molecules than classical dynamic surface tension measurements. At very low BLG or surfactant concentrations, for example, the measured local velocity profile of an air bubble is changing dramatically in time scales of seconds while dynamic surface tensions still do not show any measurable changes at this time scale. The solution's pH and ionic strength are important parameters that govern the measured rising velocity for protein solutions. A general theoretical description of rising bubbles in surfactant and protein solutions is not available at present due to the complex situation of the adsorption process at a bubble surface in a liquid flow field with simultaneous Marangoni effects. However, instead of modelling the complete velocity profile, new theoretical work has been started to evaluate the maximum values in the profile as characteristic parameter for dynamic adsorption layers at the bubble surface more quantitatively. The studies with protein-surfactant mixtures demonstrate in an impressive way that the complexes formed by the two compounds change the surface activity as compared to the original native protein molecules and therefore lead to a completely different retardation behavior of rising bubbles. Changes in the velocity profile can be interpreted qualitatively in terms of increased or decreased surface activity of the formed protein-surfactant complexes. It was also observed that the pH and ionic strength of a protein solution have strong effects on the surface activity of the protein molecules, which however, could be different on the rising bubble velocity and the equilibrium adsorption isotherms. These differences are not fully understood yet but give rise to discussions about the structure of protein adsorption layer under dynamic conditions or in the equilibrium state. The third main stage of the discussed process of fractionation is the formation and characterization of protein foams from BLG solutions at different pH and ionic strength. Of course a minimum BLG concentration is required to form foams. This minimum protein concentration is a function again of solution pH and ionic strength, i.e. of the surface activity of the protein molecules. Although at the isoelectric point, at about pH 5 for BLG, the hydrophobicity and hence the surface activity should be the highest, the concentration and ionic strength effects on the rising velocity profile as well as on the foamability and foam stability do not show a maximum. This is another remarkable argument for the fact that the interfacial structure and behavior of BLG layers under dynamic conditions and at equilibrium are rather different. These differences are probably caused by the time required for BLG molecules to adapt respective conformations once they are adsorbed at the surface. All bubble studies described in this work refer to stages of the foam fractionation process. Experiments with different systems, mainly surfactant and protein solutions, were performed in order to form foams and finally recover a solution representing the foamed material. As foam consists to a large extent of foam lamella - two adsorption layers with a liquid core - the concentration in a foamate taken from foaming experiments should be enriched in the stabilizing molecules. For determining the concentration of the foamate, again the very sensitive bubble rising velocity profile method was applied, which works for any type of surface active materials. This also includes technical surfactants or protein isolates for which an accurate composition is unknown.}, language = {en} } @misc{SchoenbornHartke2013, author = {Sch{\"o}nborn, Jan Boyke and Hartke, Bernd}, title = {Photochemical dynamics of E-methylfurylfulgide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94516}, pages = {2483 -- 2490}, year = {2013}, abstract = {With the present theoretical study of the photochemical switching of E-methylfurylfulgide we contribute an important step towards the understanding of the photochemical processes in furylfulgide-related molecules. We have carried out large-scale, full-dimensional direct semiempirical configuration-interaction surface-hopping dynamics of the photoinduced ring-closure reaction. Simulated static and dynamical UV/Vis-spectra show good agreement with experimental data of the same molecule. By a careful investigation of our dynamical data, we were able to identify marked differences to the dynamics of the previously studied E-isopropylfurylfulgide. With our simulations we can not only reproduce the experimentally observed quantum yield differences qualitatively but we can also pinpoint two reasons for them: kinematics and pre-orientation. With our analysis, we thus offer straightforward molecular explanations for the high sensitivity of the photodynamics towards seemingly minor changes in molecular constitution. Beyond the realm of furylfulgides, these insights provide additional guidance to the rational design of photochemically switchable molecules.}, language = {en} } @misc{BanerjeeSaalfrank2013, author = {Banerjee, Shiladitya and Saalfrank, Peter}, title = {Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94542}, pages = {144 -- 158}, year = {2013}, abstract = {The time-dependent approach to electronic spectroscopy, as popularized by Heller and coworkers in the 1980's, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption, emission and resonance Raman spectra of several diamondoids. Two-state models, the harmonic and the Condon approximations, are used for the calculations, making them easily applicable to larger molecules. The method is applied to nine pristine lower and higher diamondoids: adamantane, diamantane, triamantane, and three isomers each of tetramantane and pentamantane. We also consider a hybrid species "Dia = Dia" - a shorthand notation for a recently synthesized molecule comprising two diamantane units connected by a C[double bond, length as m-dash]C double bond. We resolve and interpret trends in optical and vibrational properties of these molecules as a function of their size, shape, and symmetry, as well as effects of "blending" with sp2-hybridized C-atoms. Time-dependent correlation functions facilitate the computations and shed light on the vibrational dynamics following electronic transitions.}, language = {en} } @misc{CherstvyMetzler2013, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94468}, pages = {20220 -- 20235}, year = {2013}, abstract = {We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.}, language = {en} } @misc{MondalBhuniaDemeshkoetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94424}, pages = {39 -- 42}, year = {2013}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @misc{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94360}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @misc{MondalBhuniaBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94341}, pages = {7599 -- 7601}, year = {2013}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases.}, language = {en} } @phdthesis{Ledendecker2016, author = {Ledendecker, Marc}, title = {En route towards advanced catalyst materials for the electrocatalytic water splitting reaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93296}, school = {Universit{\"a}t Potsdam}, pages = {II, 148}, year = {2016}, abstract = {The thesis on hand deals with the development of new types of catalysts based on pristine metals and ceramic materials and their application as catalysts for the electrocatalytic water splitting reaction. In order to breathe life into this technology, cost-efficient, stable and efficient catalysts are imploringly desired. In this manner, the preparation of Mn-, N-, S-, P-, and C-containing nickel materials has been investigated together with the theoretical and electrochemical elucidation of their activity towards the hydrogen (and oxygen) evolution reaction. The Sabatier principle has been used as the principal guideline towards successful tuning of catalytic sites. Furthermore, two pathways have been chosen to ameliorate the electrocatalytic performance, namely, the direct improvement of intrinsic properties through appropriate material selection and secondly the increase of surface area of the catalytic material with an increased amount of active sites. In this manner, bringing materials with optimized hydrogen adsorption free energy onto high surface area support, catalytic performances approaching the golden standards of noble metals were feasible. Despite varying applied synthesis strategies (wet chemistry in organic solvents, ionothermal reaction, gas phase reaction), one goal has been systematically pursued: to understand the driving mechanism of the growth. Moreover, deeper understanding of inherent properties and kinetic parameters of the catalytic materials has been gained.}, language = {en} } @phdthesis{Soulie2015, author = {Souli{\´e}, Virginie}, title = {Sessile droplets of salt solutions on inert and metallic surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90329}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis we investigate the evaporation behaviour of sessile droplets of aqueous saline solutions on planar inert and metallic surfaces and characterise the corrosion phenomenon for iron surfaces. First we study the evaporation behaviour of sessile salty droplets on inert surfaces for a wide range of salt concentrations, relative humidities, droplet sizes and contact angles. Our study reveals the range of validity of the well-accepted diffusion-controlled evaporation model and highlights the impact of salt concentration (surface tension) gradients driven Marangoni flows on the evaporation behaviour and the subsequent salty deposit patterns. Furthermore we study the spatial-temporal evolution of sessile droplets from saline solutions on metallic surfaces. In contrast to the simple, generally accepted Evans droplet model, we show that the corrosion spreads ahead of the macroscopic contact line with a peripheral film. The three-phase contact line is destabilized by surface tension gradients induced by ionic composition changes during the course of the corrosion process and migration of cations towards the droplet perimeter. Finally we investigate the corrosion behaviour under drying salty sessile droplets on metallic surfaces. The corrosion process, in particular the location of anodic and cathodic activities over the footprint droplet area is correlated to the spatial distribution of the salt inside the drying droplet.}, language = {en} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @misc{PrinzHeckElleriketal.2016, author = {Prinz, Julia and Heck, Christian and Ellerik, Lisa and Merk, Virginia and Bald, Ilko}, title = {DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89714}, pages = {5612 -- 5620}, year = {2016}, abstract = {DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.}, language = {en} } @misc{MondalMarquardtJaniaketal.2015, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89696}, pages = {5476 -- 5483}, year = {2015}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @misc{KlaperWessigLinker2015, author = {Klaper, M. and Wessig, Pablo and Linker, Torsten}, title = {Base catalysed decomposition of anthracene endoperoxide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89676}, pages = {1210 -- 1213}, year = {2015}, abstract = {Catalytic amounts of a weak base are sufficient to induce the decomposition of anthracene endoperoxides to anthraquinone. The mechanism has been elucidated by isolation of intermediates in combination with DFT calculations. The whole process is suitable for the convenient generation of hydrogen peroxide under very mild conditions.}, language = {en} } @misc{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89658}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @misc{KlierKumke2015, author = {Klier, Dennis Tobias and Kumke, Michael Uwe}, title = {Analysing the effect of the crystal structure on upconversion luminescence in Yb3+,Er3+-co-doped NaYF4 nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89630}, pages = {11228 -- 11238}, year = {2015}, abstract = {NaYF4:Yb:Er nanoparticles (UCNP) were synthesized under mild experimental conditions to obtain a pure cubic lattice. Upon annealing at different temperatures up to Tan = 700 °C phase transitions to the hexagonal phase and back to the cubic phase were induced. The UCNP materials obtained for different Tan were characterized with respect to the lattice phase using standard XRD and Raman spectroscopy as well as steady state and time resolved upconversion luminescence. The standard techniques showed that for the annealing temperature range 300 °C < Tan < 600 °C the hexagonal lattice phase was dominant. For Tan < 300 °C hardly any change in the lattice phase could be deduced, whereas for Tan > 600 °C a back transfer to the α-phase was observed. Complementarily, the luminescence upconversion properties of the annealed UCNP materials were characterized in steady state and time resolved luminescence measurements. Distinct differences in the upconversion luminescence intensity, the spectral intensity distribution and the luminescence decay kinetics were found for the cubic and hexagonal lattice phases, respectively, corroborating the results of the standard analytical techniques used. In laser power dependent measurements of the upconversion luminescence intensity it was found that the green (G1, G2) and red (R) emission of Er3+ showed different effects of Tan on the number of required photons reflecting the differences in the population routes of different energy levels involved. Furthermore, the intensity ratio of Gfull/R is highly effected by the laser power only when the β-phase is present, whereas the G1/G2 intensity ratio is only slightly effected regardless of the crystal phase. Moreover, based on different upconversion luminescence kinetics characteristics of the cubic and hexagonal phase time-resolved area normalized emission spectra (TRANES) proved to be a very sensitive tool to monitor the phase transition between cubic and hexagonal phases. Based on the TRANES analysis it was possible to resolve the lattice phase transition in more detail for 200 °C < Tan < 300 °C, which was not possible with the standard techniques.}, language = {en} } @misc{KlierKumke2015, author = {Klier, Dennis Tobias and Kumke, Michael Uwe}, title = {Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89618}, pages = {67149 -- 67156}, year = {2015}, abstract = {In the present work, the upconversion luminescence properties of oleic acid capped NaYF4:Gd3+:Yb3+:Er3+ upconversion nanoparticles (UCNP) with pure β crystal phase and Nd3+ ions as an additional sensitizer were studied in the temperature range of 288 K < T < 328 K. The results of this study showed that the complex interplay of different mechanisms and effects, causing the special temperature behavior of the UCNP can be developed into thermometry on the nanoscale, e.g. to be applied in biological systems on a cellular level. The performance was improved by the use of Nd3+ as an additional dopant utilizing the cascade sensitization mechanism in tri-doped UCNP.}, language = {en} } @misc{MatisSchoenbornSaalfrank2015, author = {Matis, Jochen Ren{\´e} and Sch{\"o}nborn, Jan Boyke and Saalfrank, Peter}, title = {A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89594}, pages = {14088 -- 14095}, year = {2015}, abstract = {Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single- and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S0 when starting from the S1-S0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.}, language = {en} } @misc{deCarvalhoMetzlerCherstvy2015, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Inverted critical adsorption of polyelectrolytes in confinement}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89562}, pages = {4430 -- 4443}, year = {2015}, abstract = {What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sc—defining the adsorption-desorption transition—are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sc for the concave interfaces versus the Debye screening length 1/k and the extent of confinement a for these three interfaces for small ka values. For large ka the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/k. We also rationalize how sc(k) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption—the effect often hard to tackle theoretically—putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.}, language = {en} } @misc{HentrichJungingerBrunsetal.2015, author = {Hentrich, Doreen and Junginger, Mathias and Bruns, Michael and B{\"o}rner, Hans Gerhard and Brandt, Jessica and Brezesinski, Gerald and Taubert, Andreas}, title = {Interface-controlled calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89540}, pages = {6901 -- 6913}, year = {2015}, abstract = {The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH.}, language = {en} } @phdthesis{Jehannin2015, author = {Jehannin, Marie}, title = {About the role of physico-chemical properties and hydrodynamics on the progress of a precipitation reaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88364}, school = {Universit{\"a}t Potsdam}, pages = {xii, 130}, year = {2015}, abstract = {The size and morphology control of precipitated solid particles is a major economic issue for numerous industries. For instance, it is interesting for the nuclear industry, concerning the recovery of radioactive species from used nuclear fuel. The precipitates features, which are a key parameter from the post-precipitate processing, depend on the process local mixing conditions. So far, the relationship between precipitation features and hydrodynamic conditions have not been investigated. In this study, a new experimental configuration consisting of coalescing drops is set to investigate the link between reactive crystallization and hydrodynamics. Two configurations of aqueous drops are examined. The first one corresponds to high contact angle drops (>90°) in oil, as a model system for flowing drops, the second one correspond to sessile drops in air with low contact angle (<25°). In both cases, one reactive is dissolved in each drop, namely oxalic acid and cerium nitrate. When both drops get into contact, they may coalesce; the dissolved species mix and react to produce insoluble cerium oxalate. The precipitates features and effect on hydrodynamics are investigated depending on the solvent. In the case of sessile drops in air, the surface tension difference between the drops generates a gradient which induces a Marangoni flow from the low surface tension drop over the high surface tension drop. By setting the surface tension difference between the two drops and thus the Marangoni flow, the hydrodynamics conditions during the drop coalescence could be modified. Diols/water mixtures are used as solvent, in order to fix the surface tension difference between the liquids of both drops regardless from the reactant concentration. More precisely, the used diols, 1,2-propanediol and 1,3-propanediol, are isomer with identical density and close viscosity. By keeping the water volume fraction constant and playing with the 1,2-propanediol and 1,3-propanediol volume fractions of the solvents, the mixtures surface tensions differ up to 10 mN/m for identical/constant reactant concentration, density and viscosity. 3 precipitation behaviors were identified for the coalescence of water/diols/recatants drops depending on the oxalic excess. The corresponding precipitates patterns are visualized by optical microscopy and the precipitates are characterized by confocal microscopy SEM, XRD and SAXS measurements. In the intermediate oxalic excess regime, formation of periodic patterns can be observed. These patterns consist in alternating cerium oxalate precipitates with distinct morphologies, namely needles and "microflowers". Such periodic fringes can be explained by a feedback mechanism between convection, reaction and the diffusion.}, language = {en} } @misc{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86826}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @misc{RoderHille2015, author = {Roder, Phillip and Hille, Carsten}, title = {A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86592}, year = {2015}, abstract = {Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.}, language = {en} } @misc{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Quantifying non-ergodic dynamics of force-free granular gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85200}, year = {2015}, abstract = {Brownianmotion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat—depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions—both a constant and a velocity-dependent (viscoelastic) restitution coefficient e. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of e on the impact velocity of particles.}, language = {en} } @misc{MaiBoyeYuanetal.2015, author = {Mai, Tobias and Boye, Susanne and Yuan, Jiayin and V{\"o}lkel, Antje and Gr{\"a}wert, Marlies and G{\"u}nter, Christina and Lederer, Albena and Taubert, Andreas}, title = {Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85299}, year = {2015}, abstract = {The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol-1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol-1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution.}, language = {en} }